研究生: |
吳聖頎 Sheng-Chi Wu |
---|---|
論文名稱: |
染敏太陽電池多尺度質傳模擬與發電性能設計 Multiscale Simulation of Mass Transfer and Power Design of Dye-Sensitized Solar Cells |
指導教授: |
洪哲文
Che-Wun Hong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 染料敏化太陽電池 、分子動力學 、質傳理論 、性能 、多尺度模擬 |
外文關鍵詞: | DSSC, molecular dynamic, mass transfer, performance, multiscale simulation |
相關次數: | 點閱:71 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對染料敏化太陽電池(Dye-Sensitized Solar Cell, 簡稱DSSC) 微觀下奈米尺度的電解質離子傳遞現象與導電性能做模擬,以及建立巨觀下的質量傳遞數學模式,並進行濃度場及太陽電池性能之數值計算與預測。
由於染料敏化太陽電池在微觀中,內部染料電子被激發、電解質氧化還原離子擴散速率與離子本身導電性能與內部電場會對整體太陽電池發電性能有很大的影響。因此,本論文先從微觀角度來建立染料敏化太陽電池的質傳模式,並探討其本身特性。於奈米尺度下,本論文建立了染料敏化太陽電池電解質分子動力學模擬模式,利用量子力學半經驗公式(Austin Model 1)計算電解質電荷分布情形以及分子結構,再經由分子動力學理論與統計熱力學計算電解質的擴散係數與離子導電性能,並且針對不同電解質成分及不同操作環境下做分析。
再則建立染料敏化太陽電池電解質巨觀質傳模式,利用微觀角度下所計算出的電解質擴散係數與離子導電性以及質傳理論(Fick’s Law),計算在多孔性電極結構中離子溶液質傳的情況,並在陰極的部分以有限差分法推導濃度場,根據所消耗掉的電解質計算出其導電能力與發電性能。最後,預測出不同操作狀況下的染料敏化太陽電池的發電性能(I-V)曲線與效率,並且與實驗結果相互比較。
[1] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solarcell based on dye-sensitized colloidal TiO2 film”, Nature, VOL.353, p. 737, 1991.
[2] R. Chuanmin, P. Maggie, and K. Varghese, “Enhanced photoelectrochemical-response in highlyordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte”, Solar Energy Materials & Solar Cells, vol 90, p. 1283–1295, 2006.
[3] M. Gratzel, “Review Dye-sensitized solar cells”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4, p. 145–153, 2003.
[4] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, vol 261, p. 402-403, 1976.
[5] G. Wolfbauer, A..Bond, J. Eklund, and D. Macfarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells”, Solar Energy materials and Solar Cells, vol 70, p. 85-101, 2001.
[6] M. Gratzel, “Photoelectrochemical Cells”, Nature, vol 414, p. 338-344, 2001.
[7] M. Durr, G. Kron, U. Rau, J. H. Werner, A. Yasuda and G. Nelles, “Diffusion-limited transport of through nanoporous TiO2-polymer gel networks”, Journal of Chemical Physics, volume 121, number 22, 2004.
[8] R. Vuilleumier, and D. Borgis, “An Extend Empirical Valence Bond Model for Describing Proton Transfer in H+(H2O) Clusters and Liquid Water”, Chemical Physics Letters, Vol. 284, p. 71-77, 1998.
[9] J. Ennari, M. Elomaa, and F. Sundholm, “Modeling a Polyelectrolyte system in water to estimate the ion-conductivity”, Polymer, vol 40, p. 5035-5041, 1999.
[10] Mayo, S. L., Olafson, B. D., and Goddard, W. D., “DREIDING: A Generic Force for Molecular Simulations”, Journal of Physics Chemistry, vol 94, p. 8897-8909, 1990.
[11] G. Herlem, S. Picaud, and P.N.M. Hoang, “Combined elastic neutron scattering experiment and molecular dynamics simulations on the concentrated liquid electrolyte NaI-3.3NH3”, Journal of Molecular Liquids, 108/1–3 , 2003.
[12] G. Herlem, S. Picaud, and P. N. M. Hoang, “A Molecular dynamics simulation of the electrical conductivity behaviors of high concentrated liquid ammoniates Nal•αNH3:Comparison with experimental measurements”, Journal of Chemical Physics, vol 122, p. 171102, 2005.
[13] J. Matthias, and T. Helmut, “Role of Nanochemical Environments in Porous TiO2 in Photocurrent Efficiency and Degradation in Dye Sensitized Solar Cell”, J. Phys. Chem. B, vol 109, p.22876-22883, 2005.
[14] Jenny Nelson, “The Physics of Solar Cells”, Imperial College Press, 2003.