簡易檢索 / 詳目顯示

研究生: 邱偉齊
Chiu, Wei-Chi
論文名稱: Correlations Between μ→eγ and Muon g-2
指導教授: 耿朝強
Geng, Chao-Qiang
口試委員: 李靈峰
Li, Ling-Fong
林貴林
Lin, Guey-Lin
楊毅
Yang, Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 39
中文關鍵詞: 緲子g-2
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們檢驗標準模型外的新物理所貢獻的muon g-2偏差,特別著重在muon g-2 和μ → eγ 衰變的有效運算子上的關聯性,我們並藉由μ → eγ 衰變率的實驗上限來限制新物理對muon g-2的貢獻.此外,我們明顯地展現兩個可能的方法來令模型可以同時滿足夠大的muon g-2以符合偏差與低於實驗上限的μ → eγ 衰變率.


    We examine the muon g-2 anomaly based on new physics beyond the Standard Model. In particular, we concentrate on the correlations between the muon g-2 and the μ → eγ decay from effective operators, and use the μ → eγ experimental bound to constrain new physics. We explicitly show two possible methods to realize the model with a sizable muon g-2 and a small μ → eγ rate simultaneously.

    Contents 1 Introduction 2 2 General Formulation 4 2.1 Generalelectromagneticvertex .................... 4 2.2 Anomalousmagneticmomentg-2 ................... 6 2.3 aμintheStandardModel ....................... 7 2.3.1 IntroductiontotheStandardModel. . . . . . . . . . . . . . 7 2.3.2 Modeldescreption ....................... 7 2.3.3 aμintheStandardModel ................... 10 2.4 Muong-2anomaly ........................... 12 3 Applying μ → eγ to constrain muon g-2 13 3.1 Generalanalysisfromeffectiveoperators . . . . . . . . . . . . . . . 13 3.2 Possible methods to build models with small μ → eγ rate and large aμ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 GIMmechanism ........................ 15 3.2.2 Non-universalcouplings .................... 18 4 Specific models 26 4.1 Left-right symmetric model with inverse seesaw . . . . . . . . . . . 26 4.2 Scalarleptoquarkmodelwithoutprotondecay . . . . . . . . . . . . 29 5 Conclusions 33 Bibliography ................................. 35

    [1] W. Gerlach and O. Stern. Experimental proof of the magnetic moment of the silver atom. Z.Phys., 8:110–111, 1922.
    [2] Paul A.M. Dirac. The Quantum theory of electron. Proc.Roy.Soc.Lond., A117:610–624, 1928.
    [3] P.A.M. Dirac. The Quantum theory of electron. 2. Proc.Roy.Soc.Lond., A118:351, 1928.
    [4] L. E. Kinsler and W. V. Houston. The value of e from the zeeman effect. m
    Phys. Rev., 45:104–108, Jan 1934.
    [5] H.M. Foley and P. Kusch. On the Intrinsic Moment of the Electron. Phys.Rev.,
    73:412–412, 1948.
    [6] Julian S. Schwinger. On Quantum electrodynamics and the magnetic moment
    of the electron. Phys.Rev., 73:416–417, 1948.
    [7] G.W. Bennett et al. Measurement of the negative muon anomalous magnetic
    moment to 0.7 ppm. Phys.Rev.Lett., 92:161802, 2004.
    [8] G.W. Bennett et al. Final Report of the Muon E821 Anomalous Magnetic
    Moment Measurement at BNL. Phys.Rev., D73:072003, 2006.
    [9] T.-P. Cheng and L.-F. Li. Gauge Theory of Elementary Particle Physics.
    Oxford University Press, New York, NY, 1994.
    [10] P. B. Pal A. Lahiri. A First Book of Quantum Field Theory. Alpha Science Intl Ltd, second edition, 2005.
    [11] Rabindra N Mohapatra and Palash B Pal. Massive Neutrinos in Physics and Astrophysics. World Scientific Publishing Company, third edition, 2004.
    [12] M. Maggiore. A Modern Introduction to Quantum Field theory. Oxford Uni- versity Press, 2005.
    [13] S.L. Glashow. Partial Symmetries of Weak Interactions. Nucl.Phys., 22:579– 588, 1961.
    [14] Steven Weinberg. A Model of Leptons. Phys.Rev.Lett., 19:1264–1266, 1967.
    [15] A. Salam. In Elementary particle physics (Nobel symp No. 8). Almqvist and
    Wilsell, Stockholm, 1968.
    [16] S.L. Glashow, J. Iliopoulos, and L. Maiani. Weak Interactions with Lepton-
    Hadron Symmetry. Phys.Rev., D2:1285–1292, 1970.
    [17] Gerard ’t Hooft. Renormalizable lagrangians for massive yang-mills fields.
    Nucl.Phys., B35:167–188, 1971.
    [18] Gerard ’t Hooft. Renormalization of massless yang-mills fields. Nucl.Phys.,
    B33:173–199, 1971.
    [19] D.J. Gross and Frank Wilczek. Ultraviolet Behavior of Nonabelian Gauge
    Theories. Phys.Rev.Lett., 30:1343–1346, 1973.
    [20] H. David Politzer. Reliable Perturbative Results for Strong Interactions?
    Phys.Rev.Lett., 30:1346–1349, 1973.
    [21] Zhi-Zhonh Xing and Shun Zhou. Neutrinos in Particle Physics, Astronomy
    and Cosmology. Springer, 2010.
    [22] Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and
    Astrophysics. Oxford University Press, 2007.
    [23] T. Nakano and K. Nishijima. Charge Independence for V-particles.
    Prog.Theor.Phys., 10:581–582, 1953.
    [24] M. Gell-Mann. Isotopic Spin and New Unstable Particles. Phys.Rev., 92:833– 834, 1953.
    [25] J. Beringer et al. Review of Particle Physics (RPP). Phys.Rev., D86:010001, 2012.
    [26] Toichiro Kinoshita and M. Nio. Improved α4 term of the electron anomalous magnetic moment. Phys.Rev., D73:013003, 2006.
    [27] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio. Revised value of the eighth-order electron g-2. Phys.Rev.Lett., 99:110406, 2007.
    [28] T. Kinoshita and M. Nio. The Tenth-order QED contribution to the lepton g-2: Evaluation of dominant α5 terms of muon g-2. Phys.Rev., D73:053007, 2006.
    [29] Sacha Davidson and Patrice Verdier. Leptoquarks decaying to a top quark and a charged lepton at hadron colliders. Phys.Rev., D83:115016, 2011.
    [30] R. Jackiw and Steven Weinberg. Weak interaction corrections to the muon magnetic moment and to muonic atom energy levels. Phys.Rev., D5:2396– 2398, 1972.
    [31] K. Fujikawa, B.W. Lee, and A.I. Sanda. Generalized Renormalizable Gauge Formulation of Spontaneously Broken Gauge Theories. Phys.Rev., D6:2923– 2943, 1972.
    [32] Andrzej Czarnecki, William J. Marciano, and Arkady Vainshtein. Refine- ments in electroweak contributions to the muon anomalous magnetic moment. Phys.Rev., D67:073006, 2003.
    [33] T. Gribouk and A. Czarnecki. Electroweak interactions and the muon g-2: Bosonic two-loop effects. Phys.Rev., D72:053016, 2005.
    [34] Michel Davier, Andreas Hoecker, Bogdan Malaescu, and Zhiqing Zhang. Reevaluation of the Hadronic Contributions to the Muon g-2 and to α(MZ). Eur.Phys.J., C71:1515, 2011.
    [35] Ricard Alemany, Michel Davier, and Andreas Hocker. Improved determina- tion of the hadronic contribution to the muon (g-2) and to α(M(z)) using new data from hadronic tau decays. Eur.Phys.J., C2:123–135, 1998.
    [36] F. Jegerlehner and A. Nyffeler. The Muon g-2. Phys.Rept., 477:1–110, 2009.
    [37] Kaoru Hagiwara, Ruofan Liao, Alan D. Martin, Daisuke Nomura, and Thomas Teubner. (g − 2)μ and α(MZ2 ) re-evaluated using new precise data. J.Phys., G38:085003, 2011.
    [38] J. Adam et al. New constraint on the existence of the μ+→e+γ decay. arXiv: 1303.0754[hep-ex], 2013.
    [39] Jacques P. Leveille. The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models. Nucl.Phys., B137:63, 1978.
    [40] Kevin R. Lynch. A Note on one loop electroweak contributions to g-2: A Companion to BUHEP-01-16. 2001.
    [41] Jogesh C. Pati and Abdus Salam. Lepton Number as the Fourth Color. Phys.Rev., D10:275–289, 1974.
    [42] Rabindra N. Mohapatra and Jogesh C. Pati. Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation. Phys.Rev., D11:566–571, 1975.
    [43] R.E. Marshak and Rabindra N. Mohapatra. Quark - Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group. Phys.Lett., B91:222–224, 1980.
    [44] J.M. Frere and J. Liu. CP VIOLATION IN THE LEPTON SECTOR WITH SMALL NEUTRINO MASSES. Nucl.Phys., B324:333–347, 1989.
    [45] C.Q. Geng. g-2 and electric dipole moments of leptons. FLAVOR PHYSICS: Proceedings. International Conference on Flavor Physics (ICFP 2001), pages 256–264, 2001.
    [46] Georges Aad et al. Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at √s = 7 TeV with the ATLAS detector. Eur.Phys.J., C72:2056, 2012.
    [47] Jonathan M. Arnold, Bartosz Fornal, and Mark B. Wise. Phenomenology of scalar leptoquarks. arXiv: 1304.6119[hep-ph], 2013.
    [48] Rachid Benbrik and Chun-Khiang Chua. Lepton Flavor Violating l→l′ γ and Z→ll ̄′ Decays Induced by Scalar Leptoquarks. Phys.Rev., D78:075025, 2008.
    [49] Michael Carpentier and Sacha Davidson. Constraints on two-lepton, two quark operators. Eur.Phys.J., C70:1071–1090, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE