研究生: |
賴以晟 Lai, Yi-Cheng |
---|---|
論文名稱: |
樹枝狀高分子與界面活性劑靜電錯合物之實驗與模擬研究 Experimental and Simulation Studies of the Electrostatic Complexes of Dendrimer and Amphiphilic Surfactant |
指導教授: |
陳信龍
Chen, Hsin-Lung |
口試委員: |
童世煌
Tung, Shih-Huang 張佳智 Chang, Chia-Chih 蘇群仁 Su, Chun-Jen 黃天榮 Tien, Jung-Huang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 樹枝狀高分子 、界面活性劑 、小角度散射 、分子動力學模擬 、靜電錯合物 |
外文關鍵詞: | Dendrimer, Amphiphilic Surfactant, Small Angle X-ray Scattering, Molecular Dynamics Simulation, Electrostatic Complexes |
相關次數: | 點閱:97 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用大分子作為建構單元(building block)進行自組裝是一種便利且有效的方法,可產生具有可控性和結構明確的功能性材料。高分子與兩性界面活性劑間通過極性與非極性的排斥作用力產生微相分離,此種方法有潛力能建構出廣泛且具有長程有序的奈米結構。因此,本研究的重點著重於第二代、第三代和第九代樹枝狀高分子與兩種不同的界面活性劑,DBSA 和 SDS,透過靜電作用力所產生的自組裝行為。考慮到僅依靠實驗方法難以獲得關於錯合機制的分子細節,本研究試圖將小角度X射線散射(SAXS)和低溫電子顯微鏡(cryo-EM)等實驗方法與分子動力學模擬 (Molecular Dynamics Simulation) 相結合,以深入瞭解結構形成的機制。
在第二代和第三代樹枝狀高分子與DBSA的錯合系統中,發現當界面活性劑的鍵結率(binding ratio, xn)超過0.5時會形成長程有序的層狀結構。兩種錯合物形成相近的層間距,表示層與層之間的距離幾乎和樹枝狀高分子的代數沒有相關性,同時也顯示第二代和第三代樹枝狀高分子在極性層中受到高度的壓縮。在質子化的樹枝狀高分子與SDS的錯合系統中,發現隨著鍵結率與質子化程度的上升,樹枝狀高分子會稍微受到壓縮以利於靜電作用力的增加,進而形成六面堆疊柱狀的緊密堆疊結構。在此狀態下,原先界面活性劑的圓球膠束在錯合後轉為柱狀體,以增加對樹枝狀高分子表面的電荷中和。此外,通過分析發現,柱狀體由一開始的圓形截面轉變為橢圓形截面,這表明樹枝狀高分子構像上的劇烈變化協同柱狀體的截面形變來增強靜電作用力。最後,兩種系統分別形成層狀與六角柱狀結構的原因,可以用介面活性劑的幾何特徵來說明。由於在DBSA的分子結構中存在一個苯環和隨機分枝的疏水鏈段,相較於SDS的線性脂肪烴,DBSA具有較大排列參數(packing parameters),而有利於形成層狀結構。
在第九代樹枝狀高分子與DBSA的系統中,透過小角度散射實驗觀察到錯合物具有類似核小體(nucleosome)結構。透過實空間的核小體模型計算得到與實驗結果相近的SAXS圖譜,說明DBSA的膠束形成類似於DNA的線性結構並纏繞在第九代高分子的表面形成螺旋結構,其螺距約介於3.2~4.3奈米之間。這種獨特的類核小體結構的發現說明第九代樹枝狀高分子的高度剛性可抵抗電荷平衡所引起的形變,因此,膠束必須與鄰近的膠束之間進行融合並纏繞在樹枝狀高分子的周圍,以利於酸鹼中和。此外,觀察到類核小體結構也說明像是DNA或膠束這一類柔軟性較高的柱狀建構單元,可以扭曲成螺旋結構,以最大程度的包裹住帶相反電荷的高電荷粒子來實現最佳的電荷平衡。同時,本研究也利用分子模擬來解析此系統的結構形成機制。在模型的建構方面,與實驗數據進行比較並修正為符合實際情況的參數,最終應用在分子模擬的系統中。在模擬中觀察到,由於強烈的電荷作用力,DBSA的膠束與樹枝狀高分子的表面接觸,且不僅止於吸附在樹枝狀高分子的表面上,隨著模擬時間的推移,鄰近的膠束與膠束之間會逐步地融合成柱狀結構並纏繞在樹枝狀高分子的表面上,最終的模擬結果呈現與實驗結果類核小體結構。
Self-assembly using macromolecules as building blocks offers a facile and effective approach to produce functional materials with controllable and well-defined structures. Through the microphase separation between polar and nonpolar interaction, the complexation of polymer with amphiphilic surfactant has the potential to construct a broad spectrum of long-range ordered nanostructures. This dissertation focuses on the self-assembly behavior of the electrostatic complexes of poly(amidoamine) (PAMAM) dendrimers of G2, G3 and G9 with two different types of surfactants, i.e., dodecylbenzenesulfonic acid (DBSA) and sodium dodecyl sulfate (SDS). Considering that the insight into molecular detail of the complexation mechanism is difficult to investigate by experimental methods alone, this work attempts to combine the experimental methods including small angle X-ray scattering (SAXS) and cryogenic electron microscope (cryo-EM) with the power of molecular dynamics simulations to gain deep understanding on the mechanism of structural formation.
In the complexes of DBSA with both PAMAM G2 and G3 dendrimers, long-range ordered lamellar structures were found to develop when the nominal binding ratio (xn) exceeded 0.5. The fact that the interlamellar distance was virtually independent of the dendrimer generation number implied that G2 and G3 dendrimer molecules were highly compressed along the lamellar interface driven by the strong electrostatic attraction between dendrimer and surfactant. The complexations of protonated dendrimer systems with SDS driven by the entropic gain from counterion release yielded a hexagonally packed cylinder morphology. In this case, the original spherical SDS micelles merged into cylindrical micelles to enhance contact with dendrimers. Additionally, it was found that, as the binding ratio increased, the cross section of the cylindrical micelles changed from nearly circular to elliptical to facilitate charge matching. The preference for lamellar and cylinder structure in DBSA and SDS complexes, respectively, was attributed to the geometric differences between DBSA and SDS molecules.
The complexes of PAMAM G9 dendrimer with DBSA were found to exhibit a SAXS pattern resembling that of the DNA-dendrimer complexes showing nucleosome-like structure wherein DNA wraps around the dendrimer molecules spirally. The SAXS profile calculated using the real-space model closely matched the experimental scattering curve, confirming that DBSA micelles formed a helix wrapping around G9 dendrimer with a regular pitch length of 3.2~4.3 nm. This unique structure was confirmed by cryo-EM observation. The discovery of this nucleosome-like structure signifies the universality of soft cylindrical building block such as DNA and micelle to twist into a helical object for wrapping around the oppositely charged particles with high charge density for optimal charge matching. MD simulation results demonstrated that the DBSA micelles bound with the dendrimer surface because of strong electrostatic attractive forces. When the number of micelles on the dendrimer surface approached certain concentration, the micelles not only adsorbed on the dendrimer but also merged with the neighboring micelles to form a spiral cylinder. Eventually, the nucleosome-like structure was observed in the simulation similar to experimental results.
(1) Hudson, S.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. Science. 1997, 278, 449-452.
(2) Balagurusamy, V.; Ungar, G.; Percec, V.; Johansson, G. Journal of the American Chemical Society. 1997, 119, 1539-1555.
(3) Yeardley, D. J.; Ungar, G.; Percec, V.; Holerca, M. N.; Johansson, G. Journal of the American Chemical Society. 2000, 122, 1684-1689.
(4) Ungar, G.; Liu, Y.; Zeng, X.; Percec, V.; Cho, W.-D. Science. 2003, 299, 1208-1211.
(5) Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs, J. K. Nature. 2004, 428, 157-160.
(6) Wu, Y.-C.; Kuo, S.-W. Journal of Materials Chemistry. 2012, 22, 2982-2991.
(7) Li, M.; Ishihara, S.; Ji, Q.; Akada, M.; Hill, J. P.; Ariga, K. Science and technology of advanced materials. 2012, 13, 053001.
(8) Huang, M.; Hsu, C.-H.; Wang, J.; Mei, S.; Dong, X.; Li, Y.; Li, M.; Liu, H.; Zhang, W.; Aida, T. Science. 2015, 348, 424-428.
(9) Yue, K.; Huang, M.; Marson, R. L.; He, J.; Huang, J.; Zhou, Z.; Wang, J.; Liu, C.; Yan, X.; Wu, K. Proceedings of the National Academy of Sciences. 2016, 113, 14195-14200.
(10) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polymer journal. 1985, 17, 117-132.
(11) Piotti, M. E.; Rivera, F.; Bond, R.; Hawker, C. J.; Fréchet, J. M. Journal of the American Chemical Society. 1999, 121, 9471-9472.
(12) Esfand, R.; Tomalia, D. A. Drug Discov Today. 2001, 6, 427-436.
(13) Hecht, S.; Fréchet, J. M. Angewandte Chemie International Edition. 2001, 40, 74-91.
(14) Tully, D. C.; Fréchet, J. M. Chemical Communications. 2001, 1229-1239.
(15) Klajnert, B.; Bryszewska, M. Acta biochimica polonica. 2001, 48, 199-208.
(16) Tomalia, D. A. Progress in Polymer Science. 2005, 30, 294-324.
(17) Abbasi, E.; Aval, S. F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H. T.; Joo, S. W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Nanoscale research letters. 2014, 9, 1-10.
(18) Maiti, P. K.; Çaǧın, T.; Wang, G.; Goddard, W. A. Macromolecules. 2004, 37, 6236-6254.
(19) Tomalia, D.; Fréchet, J. Dendrimers and Other Dendritic Polymers. 2001, 631-633.
(20) Mansel, B. W.; Chen, H. L. Curr Med Chem. 2020.
(21) Cakara, D.; Kleimann, J.; Borkovec, M. Macromolecules. 2003, 36, 4201-4207.
(22) Choi, Y.; Mecke, A.; Orr, B. G.; Banaszak Holl, M. M.; Baker, J. R. Nano Letters. 2004, 4, 391-397.
(23) Hsu, W. L.; Li, Y. C.; Chen, H. L.; Liou, W.; Jeng, U. S.; Lin, H. K.; Liu, W. L.; Hsu, C. S. Langmuir. 2006, 22, 7521-7527.
(24) Carnerup, A. M.; Ainalem, M.-L.; Alfredsson, V.; Nylander, T. Soft Matter. 2011, 7, 760-768.
(25) Dootz, R.; Toma, A. C.; Pfohl, T. Soft Matter. 2011, 7.
(26) Yang, C. C.; Huang, Y. C.; Chen, C. Y.; Su, C. J.; Chen, H. L.; Ivanov, V. A. Macromolecules. 2014, 47, 3117-3127.
(27) Allahverdi, A.; Chen, Q.; Korolev, N.; Nordenskiold, L. Sci Rep. 2015, 5, 8512.
(28) Huang, Y.-C.; Su, C.-J.; Chen, C.-Y.; Chen, H.-L.; Jeng, U. S.; Berezhnoy, N. V.; Nordenskiöld, L.; Ivanov, V. A. Macromolecules. 2016, 49, 4277-4285.
(29) Su, C.-J.; Chen, C.-Y.; Lin, M.-C.; Chen, H.-L.; Iwase, H.; Koizumi, S.; Hashimoto, T. Macromolecules. 2012, 45, 5208-5217.
(30) Su, C. J.; Chen, H. L.; Wei, M. C.; Peng, S. F.; Sung, H. W.; Ivanov, V. A. Biomacromolecules. 2009, 10, 773-783.
(31) Wesley, R. D.; Cosgrove, T.; Thompson, L.; Armes, S. P.; Baines, F. L. Langmuir. 2002, 18, 5704-5707.
(32) Sidhu, J.; Bloor, T. L.; Couderc-Azouani, S.; Penfold, J.; Holzwarth, J. F.; Wyn-Jones, E. Langmuir. 2004, 20, 9320-9328.
(33) Tam, K. C.; Wyn-Jones, E. Chem Soc Rev. 2006, 35, 693-709.
(34) Cheng, Y.; Li, Y.; Wu, Q.; Xu, T. J Phys Chem B. 2008, 112, 12674-12680.
(35) Wu, Q.; Cheng, Y.; Hu, J.; Zhao, L.; Xu, T. J Phys Chem B. 2009, 113, 12934-12943.
(36) Cheng, Y.; Wu, Q.; Li, Y.; Hu, J.; Xu, T. J Phys Chem B. 2009, 113, 8339-8346.
(37) Zezin, S. B.; Novoskol’tseva, O. A.; Rogacheva, V. B.; Zezin, A. B. Polymer Science Series A. 2010, 52, 374-382.
(38) Yang, K.; Cheng, Y.; Feng, X.; Zhang, J.; Wu, Q.; Xu, T. J Phys Chem B. 2010, 114, 7265-7273.
(39) Yang, H.; Yu, D.; Wang, H.; Xie, Q.; Wu, J.; Wang, J. Advances in Chemical Engineering and Science. 2013, 03, 11-18.
(40) Li, T.; Shao, N.; Liu, Y.; Hu, J.; Wang, Y.; Zhang, L.; Wang, H.; Chen, D.; Cheng, Y. J Phys Chem B. 2014, 118, 3074-3084.
(41) Cheng, Y.; Zhao, L.; Li, T. Soft Matter. 2014, 10, 2714-2727.
(42) Liu, C.-Y.; Chen, H.-L. Macromolecules. 2017, 50, 6501-6508.
(43) Liu, C.-Y.; Chen, H.-L.; Do, C.; Hong, K. ACS Macro Letters. 2016, 5, 1004-1008.
(44) Young, C.-M.; Chang, Y.-F.; Chen, Y.-H.; Chen, C.-Y.; Chen, H.-L. Macromolecules. 2019, 52, 9177-9185.
(45) Young, C. M.; Chang, C. L.; Chen, Y. H.; Chen, C. Y.; Chang, Y. F.; Chen, H. L. Soft Matter. 2021, 17, 397-409.
(46) McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature. 1977, 267, 585-590.
(47) Roccatano, D.; Barthel, A.; Zacharias, M. Biopolymers: Original Research on Biomolecules. 2007, 85, 407-421.
(48) Sharma, S.; Ding, F.; Dokholyan, N. V. Biophysical journal. 2007, 92, 1457-1470.
(49) Tinoco Jr, I.; Wen, J.-D. Physical biology. 2009, 6, 025006.
(50) Brandman, R.; Brandman, Y.; Pande, V. S. PloS one. 2012, 7, e29377.
(51) Hospital, A.; Goni, J. R.; Orozco, M.; Gelpi, J. L. Adv Appl Bioinform Chem. 2015, 8, 37-47.
(52) Luchko, T.; Gusarov, S.; Roe, D. R.; Simmerling, C.; Case, D. A.; Tuszynski, J.; Kovalenko, A. Journal of chemical theory and computation. 2010, 6, 607-624.
(53) Kleinjung, J.; Fraternali, F. Current opinion in structural biology. 2014, 25, 126-134.
(54) Anandakrishnan, R.; Drozdetski, A.; Walker, R. C.; Onufriev, A. V. Biophysical journal. 2015, 108, 1153-1164.
(55) Ott, K. H.; Meyer, B. Journal of Computational Chemistry. 1996, 17, 1068-1084.
(56) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. The Journal of Physical Chemistry B. 2001, 105, 6474-6487.
(57) Lee, H.; Larson, R. G. Molecules. 2009, 14, 423-438.
(58) Martinho, N.; Florindo, H.; Silva, L.; Brocchini, S.; Zloh, M.; Barata, T. Molecules. 2014, 19, 20424-20467.
(59) Kelly, C. V.; Leroueil, P. R.; Orr, B. G.; Banaszak Holl, M. M.; Andricioaei, I. The Journal of Physical Chemistry B. 2008, 112, 9346-9353.
(60) Lee, H.; Larson, R. G. The journal of physical chemistry B. 2008, 112, 7778-7784.
(61) Maiti, P. K.; Bagchi, B. Nano letters. 2006, 6, 2478-2485.
(62) Ikkala, O.; ten Brinke, G. Science. 2002, 295, 2407-2409.
(63) Kim, J. K.; Yang, S. Y.; Lee, Y.; Kim, Y. Progress in Polymer Science. 2010, 35, 1325-1349.
(64) Boles, M. A.; Engel, M.; Talapin, D. V. Chem Rev. 2016, 116, 11220-11289.
(65) Chen, H. L.; Hsiao, M. S. Macromolecules. 1999, 32, 2967-2973.
(66) Chen, H.-L.; Ko, C.-C.; Lin, T.-L. Langmuir. 2002, 18, 5619-5623.
(67) Cheng, Z. Y.; Ren, B. Y.; Shan, H. Z.; Liu, X. X.; Tong, Z. Macromolecules. 2008, 41, 2656-2662.
(68) Yu, T.; Zhou, Y.; Zhao, Y.; Liu, K. P.; Chen, E. Q.; Wang, D. J.; Wang, F. S. Macromolecules. 2008, 41, 3175-3180.
(69) Tschierske, C. Annual Reports Section "C" (Physical Chemistry). 2001, 97, 191-267.
(70) Liu, Y. S.; Li, M. H.; Bansil, R.; Steinhart, M. Macromolecules. 2007, 40, 9482-9490.
(71) Lombardo, D.; Kiselev, M. A.; Magazu, S.; Calandra, P. Advances in Condensed Matter Physics. 2015, 2015.
(72) Hagslätt, H.; Söderman, O.; Jönsson, B. Liquid Crystals. 1992, 12, 667-688.
(73) Thünemann, A. F. Polymer international. 2000, 49, 636-644.
(74) Tenneti, K. K.; Chen, X.; Li, C. Y.; Tu, Y.; Wan, X.; Zhou, Q. F.; Sics, I.; Hsiao, B. S. J Am Chem Soc. 2005, 127, 15481-15490.
(75) Chu, C.; Jiang, X.; Jinnai, H.; Pei, R.; Lin, W.; Tsai, J.; Chen, H. Soft Matter. 2015, 11, 1871-1876.
(76) Li, Y.; McMillan, C. A.; Bloor, D. M.; Penfold, J.; Warr, J.; Holzwarth, J. F.; Wyn-Jones, E. Langmuir. 2000, 16, 7999-8004.
(77) Li, X.; Imae, T.; Leisner, D.; López-Quintela, M. A. The Journal of Physical Chemistry B. 2002, 106, 12170-12177.
(78) Sidhu, J.; Bloor, T. L.; Couderc-Azouani, S.; Penfold, J.; Holzwarth, J. F.; Wyn-Jones, E. Langmuir. 2004, 20, 9320-9328.
(79) Wang, C.; Wyn-Jones, E.; Tam, K. C. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010, 364, 49-54.
(80) Cheng, Y.; Zhao, L.; Li, T. Soft Matter. 2014, 10, 2714-2727.
(81) Liu, C.-Y.; Chen, H.-L. Macromolecules. 2017, 50, 6501-6508.
(82) Young, C.-M.; Chang, Y.-F.; Chen, Y.-H.; Chen, C.-Y.; Chen, H.-L. Macromolecules. 2019, 52, 9177-9185.
(83) Young, C. M.; Chang, C. L.; Chen, Y. H.; Chen, C. Y.; Chang, Y. F.; Chen, H. L. Soft Matter. 2021, 17, 397-409.
(84) Prosa, T. J.; Bauer, B. J.; Amis, E. J.; Tomalia, D. A.; Scherrenberg, R. Journal of Polymer Science Part B-Polymer Physics. 1997, 35, 2913-2924.
(85) Jackson, C. L.; Chanzy, H. D.; Booy, F. P.; Drake, B. J.; Tomalia, D. A.; Bauer, B. J.; Amis, E. J. Macromolecules. 1998, 31, 6259-6265.
(86) Li, J.; Piehler, L.; Qin, D.; Baker, J.; Tomalia, D.; Meier, D. Langmuir. 2000, 16, 5613-5616.
(87) Maiti, P. K.; Çaǧın, T.; Wang, G.; Goddard, W. A. Macromolecules. 2004, 37, 6236-6254.
(88) Tully, D. C.; Fréchet, J. M. Chemical Communications. 2001, 1229-1239.
(89) Klajnert, B.; Bryszewska, M. Acta biochimica polonica. 2001, 48, 199-208.
(90) Esfand, R.; Tomalia, D. A. Drug Discov Today. 2001, 6, 427-436.
(91) Hecht, S.; Fréchet, J. M. Angewandte Chemie International Edition. 2001, 40, 74-91.
(92) Tomalia, D. A. Progress in Polymer Science. 2005, 30, 294-324.
(93) Maiti, P. K.; Bagchi, B. Nano letters. 2006, 6, 2478-2485.
(94) Su, C. J.; Chen, H. L.; Wei, M. C.; Peng, S. F.; Sung, H. W.; Ivanov, V. A. Biomacromolecules. 2009, 10, 773-783.
(95) Wu, Q.; Cheng, Y.; Hu, J.; Zhao, L.; Xu, T. J Phys Chem B. 2009, 113, 12934-12943.
(96) Cheng, Y.; Wu, Q.; Li, Y.; Hu, J.; Xu, T. J Phys Chem B. 2009, 113, 8339-8346.
(97) Dootz, R.; Toma, A. C.; Pfohl, T. Soft Matter. 2011, 7.
(98) Su, C.-J.; Chen, C.-Y.; Lin, M.-C.; Chen, H.-L.; Iwase, H.; Koizumi, S.; Hashimoto, T. Macromolecules. 2012, 45, 5208-5217.
(99) Yang, C. C.; Huang, Y. C.; Chen, C. Y.; Su, C. J.; Chen, H. L.; Ivanov, V. A. Macromolecules. 2014, 47, 3117-3127.
(100) Huang, Y.-C.; Su, C.-J.; Chen, C.-Y.; Chen, H.-L.; Jeng, U. S.; Berezhnoy, N. V.; Nordenskiöld, L.; Ivanov, V. A. Macromolecules. 2016, 49, 4277-4285.
(101) Eichman, J.; Bielinska, A.; Kukowska‐Latallo, J.; Donovan, B.; Baker Jr, J. Dendrimers and other dendritic polymers. 2001, 441-461.
(102) Debye, P. Ann. Physik. 1915, 46, 809-823.
(103) Scardi, P.; Billinge, S. J.; Neder, R.; Cervellino, A. Acta Crystallogr A Found Adv. 2016, 72, 589-590.
(104) Sarker, A.K.; Brown, R. S. Ecotoxicol Environ Saf. 2021, 208, 111635.
(105) Rees, D. A.; Welsh, E. J. Angewandte Chemie-International Edition. 1977, 16, 214-223.
(106) Barlow, D. J.; Thornton, J. M. J Mol Biol. 1988, 201, 601-619.
(107) Seeman, N. C. Nature. 2003, 421, 427-431.
(108) Felsenfeld, G.; Groudine, M. Nature. 2003, 421, 448-453.
(109) Meng, Y.; Shi, X. D.; Cai, L. Q.; Zhang, S. H.; Ding, K.; Nie, S. P.; Luo, C. F.; Xu, X. J.; Zhang, L. N. Macromolecules. 2018, 51, 10150-10159.
(110) Barclay, T. G.; Constantopoulos, K.; Matisons, J. Chem Rev. 2014, 114, 10217-10291.
(111) Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Chemical Reviews. 2016, 116, 13752-13990.
(112) Scanga, R. A.; Reuther, J. F. Polymer Chemistry. 2021, 12, 1857-1897.
(113) Ho, R. M.; Chen, C. K.; Chiang, Y. W. Macromol Rapid Commun. 2009, 30, 1439-1456.
(114) Ho, R. M.; Chiang, Y. W.; Chen, C. K.; Wang, H. W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S. J Am Chem Soc. 2009, 131, 18533-18542.
(115) Tseng, W. H.; Chen, C. K.; Chiang, Y. W.; Ho, R. M.; Akasaka, S.; Hasegawa, H. J Am Chem Soc. 2009, 131, 1356-1357.
(116) Chiang, Y.-W.; Ho, R.-M.; Burger, C.; Hasegawa, H. Soft Matter. 2011, 7, 9797-9803.
(117) Timsit, Y. Int J Mol Sci. 2013, 14, 8252-8270.
(118) Gulik-Krzywicki, T.; Fouquey, C.; Lehn, J. Proc Natl Acad Sci U S A. 1993, 90, 163-167.
(119) Chen, C. K.; Hsueh, H. Y.; Chiang, Y. W.; Ho, R. M.; Akasaka, S.; Hasegawa, H. Macromolecules. 2010, 43, 8637-8644.
(120) Chen, C. K.; Lin, S. C.; Ho, R. M.; Chiang, Y. W.; Lotz, B. Macromolecules. 2010, 43, 7752-7758.
(121) Bonduelle, C. Polymer Chemistry. 2018, 9, 1517-1529.
(122) Puneet, P.; Shao, S. W.; Ho, R. M. Macromol Rapid Commun. 2022, e2200369.
(123) Jeong, K. U.; Knapp, B. S.; Ge, J. J.; Jin, S.; Graham, M. J.; Harris, F. W.; Cheng, S. Z. D. Chemistry of Materials. 2006, 18, 680-690.
(124) Song, B.; Liu, B.; Jin, Y.; He, X.; Tang, D.; Wu, G.; Yin, S. Nanoscale. 2015, 7, 930-935.
(125) Sekine, T.; Niori, T.; Sone, M.; Watanabe, J.; Choi, S. W.; Takanishi, Y.; Takezoe, H. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 1997, 36, 6455-6463.
(126) kli, A. J.; Lischka, C.; Weissflog, W.; Pelzl, G.; Saupe, A. Liquid Crystals. 2000, 27, 1405-1409.
(127) Thisayukta, J.; Nakayama, Y.; Kawauchi, S.; Takezoe, H.; Watanabe, J. Journal of the American Chemical Society. 2000, 122, 7441-7448.
(128) Thisayukta, J.; Takezoe, H.; Watanabe, J. Japanese Journal of Applied Physics. 2001, 40, 3277.
(129) Jinnai, H.; Kaneko, T.; Matsunaga, K.; Abetz, C.; Abetz, V. Soft Matter. 2009, 5, 2042-2046.
(130) Dupont, J.; Liu, G.; Niihara, K.; Kimoto, R.; Jinnai, H. Angew Chem Int Ed Engl. 2009, 48, 6144-6147.
(131) Li, W. H.; Qiu, F.; Shi, A. C. Macromolecules. 2012, 45, 503-509.
(132) Luger, K.; Mäder, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J. Nature. 1997, 389, 251-260.
(133) Richmond, T. J.; Davey, C. A. Nature. 2003, 423, 145-150.
(134) Korolev, N.; Allahverdi, A.; Lyubartsev, A. P.; Nordenskiold, L. Soft Matter. 2012, 8, 9322-9333.
(135) Schiessel, H. Journal of Physics-Condensed Matter. 2003, 15, R699-R774.
(136) Su, C.-J.; Chen, C.-Y.; Lin, M.-C.; Chen, H.-L.; Iwase, H.; Koizumi, S.; Hashimoto, T. Macromolecules. 2012, 45, 5208-5217.
(137) Huang, Y.-C.; Su, C.-J.; Chen, C.-Y.; Chen, H.-L.; Jeng, U. S.; Berezhnoy, N. V.; Nordenskiöld, L.; Ivanov, V. A. Macromolecules. 2016, 49, 4277-4285.
(138) Yang, C. C.; Huang, Y. C.; Chen, C. Y.; Su, C. J.; Chen, H. L.; Ivanov, V. A. Macromolecules. 2014, 47, 3117-3127.
(139) Mansel, B. W.; Su, C. J.; Chen, C. Y.; Young, C. M.; Huang, Y. C.; Yang, C. C.; Chen, H. L. Soft Matter. 2021, 17, 7287-7293.
(140) Liu, C.-Y.; Chen, H.-L. Macromolecules. 2017, 50, 6501-6508.
(141) Young, C.-M.; Chang, Y.-F.; Chen, Y.-H.; Chen, C.-Y.; Chen, H.-L. Macromolecules. 2019, 52, 9177-9185.
(142) Young, C. M.; Chang, C. L.; Chen, Y. H.; Chen, C. Y.; Chang, Y. F.; Chen, H. L. Soft Matter. 2021, 17, 397-409.
(143) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. J Phys Chem B. 2007, 111, 7812-7824.
(144) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. Journal of Chemical Physics. 1995, 103, 8577-8593.
(145) Bussi, G.; Donadio, D.; Parrinello, M. The Journal of chemical physics. 2007, 126, 014101.
(146) Bernetti, M.; Bussi, G. J Chem Phys. 2020, 153, 114107.
(147) Parrinello, M.; Rahman, A. Journal of Applied Physics. 1981, 52, 7182-7190.
(148) Wang, S. H.; Larson, R. G. Langmuir. 2015, 31, 1262-1271.
(149) Anogiannakis, S. D.; Petris, P. C.; Theodorou, D. N. The Journal of Physical Chemistry B. 2019, 124, 556-567.
(150) Lee, H.; Larson, R. G. The journal of physical chemistry B. 2008, 112, 7778-7784.
(151) Mustafa, G.; Nandekar, P. P.; Yu, X.; Wade, R. C. J Chem Phys. 2015, 143, 243139.
(152) Debye, P. Ann. Physik. 1915, 46, 809-823.
(153) Bressler, I.; Kohlbrecher, J.; Thunemann, A. F. J Appl Crystallogr. 2015, 48, 1587-1598.
(154) Prosa, T. J.; Bauer, B. J.; Amis, E. J.; Tomalia, D. A.; Scherrenberg, R. Journal of Polymer Science Part B-Polymer Physics. 1997, 35, 2913-2924.
(155) Maiti, P. K.; Çaǧın, T.; Wang, G.; Goddard, W. A. Macromolecules. 2004, 37, 6236-6254.
(156) Müller, R.; Laschober, C.; Szymanski, W. W.; Allmaier, G. Macromolecules. 2007, 40, 5599-5605.