簡易檢索 / 詳目顯示

研究生: 黃嬿華
Huang, Yan-Hua
論文名稱: 摻雜硼之矽鍺受應變影響以及磊晶後退火應用於鈦接觸電阻之電學特性研究
Electrical Properties of Ti / p-SiGe Contacts for Advanced PMOS Devices: Impact of Strain in SiGe:B and Post Epi Thermal Treatments
指導教授: 巫勇賢
Wu, Yung-Hsien
Porret, Clement
Porret, Clement
Loo, Roger
Loo, Roger
口試委員: 李耀仁
Lee, Yao-Jen
吳永俊
Wu, Yung-Chun
吳添立
Wu, Tian-Li
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 磊晶接觸電阻
外文關鍵詞: Epitaxy, Contact resistivity
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了達成半導體技術微縮,源極/汲極應力源在先進技術節點中使用。在p型半導體中,硼是最廣泛使用的摻雜,因為好控制的擴散速度以及在矽中的高溶解度等,在現今科技中已是成熟的製程。將鍺與矽進行製程,使源極/汲極晶格常數增加,並且將壓應力轉換給通道,增強p型半導體通道載子遷移率。另一方面,可增加p型半導體的摻雜濃度,對降低串聯電阻有所助益。矽鍺中鍺的濃度對於調變鈦/硼摻雜之矽鍺之接觸電阻的特性需要再更進一步的研究,可以藉由可到達的最高摻雜活化濃度、晶格常數以及費米能階特性進行調變。在這份研究中,專注於在矽基底上以磊晶技術進行硼的矽鍺內摻雜,並應用於鈦/硼摻雜之矽鍺的電性接觸。這些機制對達成低接觸電阻係數的影響,量測萃取的方式為多環形傳輸線模型。這項探討是重要的,因為高的接觸電阻係數會限制微縮元件的特性。首先,探討應力對於硼摻雜之矽鍺的對接觸電阻係數的影響,控制鍺含量以及摻雜濃度一致,進行調變薄膜的厚度,實驗得到在硼摻雜之矽鍺有最大的應力情況,最佳的接觸電阻係數為5E-9 ·cm2。第二項實驗為金屬後退火對鈦矽鍺接觸電阻熱穩定性之研究,得知此項研究接觸電阻穩定性達到500 oC。此份研究對於邁進接觸電阻係數1E-9 ·cm2 的接觸特性了解及控制是重要的。


    For the successful downscaling of semiconductor devices, source/drain stressors are used in modern technology nodes. In pMOS technologies, Boron is the most used dopant due its controllable diffusion depth and high solubility in Silicon, which is already mature in the processes nowadays. Alloying Si with Ge enlarges the source/drain material lattice parameter and allows to transfer compressive strain to the channel, resulting in enhanced carrier mobilities in pMOS devices. Moreover, it allows the achievement of high p-type doping concentrations, which is beneficial to reduce series resistance. As the Ge content in Si1-xGex modifies Ti / SiGe:B contact properties via the highest achievable active doping, SiGe:B lattice parameter, Fermi level pinning, it needs to be precisely chosen and tuned. In this study, focuses on Ti / SiGe:B contacts formed by using in situ doped SiGe:B epitaxially grown on Si. Mechanisms affecting the lowest achievable contact resistivity (ρc) using the multi-ring circular transmission line model technique are investigated. This is important since high ρc limit the performance of scaled devices. Firstly, discuss how strain in SiGe:B influences ρc by modulating the layer thickness while keeping the Ge content and doping concentration constant. The optimal conditions, providing ρc values of 5E-9 Ω.cm2, correlate with a maximal amount of strain in the SiGe:B. Secondly, the application of post metal annealing to further confirm the thermal stability of the fabricated contacts is investigated. The prepared contacts are stable up to 500oC. This study is an important step towards understanding and controlling contact properties in the low 1E-9 Ω.cm2 regime.

    Contents 摘要...............................................................................................................................i Abstract.........................................................................................................................ii Acknowledgements......................................................................................................iii Chapter 1 Introduction 1 1.1 The Evolution of Device Technology 1 1.2 Motivations 3 1.2.1 Si1-xGex Technology 3 1.2.2 Contact Resistance 7 1.3 Scope and Organization of the Thesis 9 Chapter 2 Theory and Literature Review 10 2.1 Theory of Epitaxial Growth of CVD 10 2.2 Theory of Metal Contacts 12 2.2.1 Metal and Semiconductor Contact 12 2.2.2 Fermi Level Pinning Effect 15 2.2.3 Metal Silicide Contact 17 2.3 Literature Review of SiGe:B Metal Contacts 19 2.3.1 Pre-Contact Amorphization Implantation (PCAI) 19 2.3.2 Extra Doping Implantation After Epitaxy 21 2.3.3 High Ge Content Si1-xGex as used for S/D contact 22 Chapter 3 Experimental Details and Methodology 24 3.1 Epitaxial Growth Using Reduced Pressure CVD (RP-CVD) 24 3.2 Samples Morphology 26 3.2.1 Scanning Electron Microscopy (SEM) 26 3.2.2 Atomic Force Microscopy (AFM) 27 3.2.3 Haze Measurement 28 3.3 Layer Composition 29 3.3.1 Secondary Ion Mass Spectrometry (SIMS) 29 3.4 Structural Layer Properties 30 3.4.1 X-Ray Diffraction (XRD) 30 3.4.2 X-Ray Reflectivity (XRR) 32 3.5 Electrical Material Properties 33 3.5.1 Micro-Four-Point Probe Measurement 34 3.5.2 Multi-Ring Circular Transmission Line Measurement (MR-CTLM) 35 3.6 Sample Description 39 3.7 Process Flow in This Study 41 Chapter 4 Experimental Results and Discussion 44 4.1 Impact of Strain in SiGe:B on Ti Contact Performance 44 4.1.1 Layer Thickness 45 4.1.2 Morphology 46 4.1.3 Compositional Analysis 48 4.1.4 Structural Analysis 50 4.1.5 Resistivity measurements 52 4.1.6 Post MR-CTLM Processing Characterization 54 4.2 Ti / SiGe:B Germanosilicidation Optimization 57 Chapter 5 Conclusions 60 5.1 Summary 60 5.2 Future Work 61 5.2.1 Extend the Study to Lower/Higher Ge Content 61 5.2.2 Evaluate Alternative Dopant for Si1-xGex 62 Bibliography 63

    [1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, 1965.

    [2] M. Roser and H. Ritchie, “Moore’s Law – exponential increase of the number of transistors on integrated circuits.” https://ourworldindata.org/technological-progress

    [3] F. D’Agostino and D. Quercia, “Short-Channel Effects in MOSFETs,” Introduction to VLSI design (EECS 467), pp.1-15, 2000.

    [4] M.-B. Lin, “Introduction to VLSI Systems: A Logic, Circuit, and System Perspective,” Boca Raton: CRC Press, 2012.

    [5] D. Lee, D. Blaauw, and D. Sylvester, “Gate Oxide Leakage Current Analysis and Reduction for VLSI Circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 2, pp. 155-156, 2004.

    [6] M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs.” Annu. Rev. Mater. Res., vol. 39, pp. 203-229, 2009.

    [7] C. K. Maiti and T. K. Maiti, “Strain-Engineered MOSFETs,” Boca Raton: CRC Press, 2013.

    [8] A. L. Shimpi, “Intel's 0.09-micron Process - More Details Emerge,” 2002.
    https://www.anandtech.com/show/964/3

    [9] Intel’s 45nm CMOS Technology, Intel Technology Journal, vol.12, no.2, 2008.

    [10] A. Hikavyy, E. Rosseel, S. Dhayalan, L. Witters, H. Mertens, H. Bender, P. Favia, R. Loo, “High Ge content SiGe thin films: growth, properties and integration,” ECS Transactions, vol. 64, no. 6, pp. 831-839, 2014.

    [11] J. D. Cressler and G. Niu, “Silicon-germanium Heterojunction Bipolar Transistors,” United States of America: Artech House, 2003.

    [12] R. Sun, “Advanced Techniques for Si1-xGex Characterization: Infrared Spectroscopic Ellipsometry,” 2004.
    http://www.angstec.com/fckimages/file/P5N_SiGe_IRSE.pdf

    [13] D. J. Paul, “Strain in Si/SiGe Heterostructures,” University of Glasgow, Semiconductor Device Group.
    http://userweb.eng.gla.ac.uk/douglas.paul/SiGe/strain.html

    [14] C.-N. Ni, Y.-C. Huang, S. Jun, S. Sun, A. Vyas, F. Khaja, K.V. Rao, S. Sharma, N. Breil, M. Jin, C. Lazik, A. Mayur, J. Gelatos, H. Chung, R. Hung, M. Chudzik, N. Yoshida, and N. Kim, “PMOS Contact Resistance Solution Compatible to CMOS Integration for 7nm Node And Beyond, “ International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2016.

    [15] D. Mangelinck, P.-E. Hellberg, S.-L. Zhang and F. M. d’Heurle, “Boron in Polycrystalline SixGe1-x Films Phase Diagram and Solid Solubility,”Journal of Electrochemical Society, vol. 145, no. 7, pp. 2530-2534, 1998.

    [16] T. Raz, F. Edelman, Y. Komem, M. Stölzer, and P. Zaumseil, “Transport properties of boron-doped crystallized amorphous Si1−x Gex films,” Applied Physics Letters, vol. 84, no. 8, pp. 4343-4350, 1998.

    [17] B. S. Meyerson, “UHV/VD Growth of Si and Si:Ge Alloys: Chemistry, Physics, and Device Applications” proceeding of the IEEE, vol. 80, no. 10, pp. 1592-1608, 1992.

    [18] C. Porret, A. Hikavyy, J. F. Gomez Granados, S. Baudot, A. Vohra, B. Kunert, B. Douhard, J. Bogdanowicz, M. Schaekers, D. Kohen, J. Margetis, J. Tolle, L. P. B. Lima, A. Sammak, G. Scappucci, E. Rosseel, R. Langer, and R. Loo, “Very Low Temperature Epitaxy of Group-IV Semiconductors for Use in FinFET, Stacked Nanowires and Monolithic 3D Integration,” ECS Journal of Solid State Science and Technology, vol. 8, no. 8, pp. 392-399, 2019.

    [19] B.-R. Huang, F.-H. Meng, Y.-C. King, and C. J. Lin, “ Investigation of parasitic resistance and capacitance effects in nanoscaled FinFETs and their impact on static random-access memory cells,” Japanese Journal of Applied Physics (JJAP), vol. 56, no. 45, pp. 04CD11, 2017.

    [20] International Technology Roadmap for Semiconductor 2.0, “Beyond CMOS,” 2015.

    [21] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett, vol. 105, no. 18, pp. 182103-1~182103-4, 2014.

    [22] PLASMA ELECTRONIC,
    https://www.plasma-electronics.com/chemical-vapor-deposition.html

    [23] J. Bloem and L.J. Giling, “VLSI Electronics Microstructure Science,” vol.12. Edited by N.G. Einspruch N.G and H. Huff, USA: Academic Press, 1985, page 89.

    [24] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Electrical & Electronic Engineering Monographs), Oxford University Press, 1988.

    [25] Saraswat, “Metal/Semiconductor Ohmic Contacts,” Stanford University.
    https://web.stanford.edu/class/ee311/NOTES/Ohmic_Contacts.pdf

    [26] S. S. Li, “Semiconductor Physical Electronics,” US: Springer, 1993.

    [27] D. K. Schroder, “Semiconductor Material and Device Characterization,” US: John Wiley & Sons, 2006.

    [28] A. M. Cowley, and S. M. Sze, “Surface States and Barrier Height of Metal-Semiconductor Systems,” Journal of Applied Physics, vol. 36, no. 10, pp. 3212-3220, 2004.

    [29] J. Robertson, and L. Lin, “Fermi Level pinning in Si, Ge and GaAs systems – MIGS or defects?” IEDM, pp.6.1.1-6.1.4, 2009.

    [30] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett, vol, 105, no.18, pp. 182103-1~182103-4, 2014.

    [31] A. Dimoulas, P. Tsipas, and A. Sotiropoulos, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett, vol, 89, no. 25, pp. 252110, 2006.

    [32] H. A. Elgomati, B. Yeop Majlis, F. Salehuddin, I. Ahmad, A. Zaharim, and F. A. Hamid, “Cobalt Silicide and Titanium Silicide Effects On Nano Devices,” IEEE Regional Symposium on Micro and Nano Electronics, pp. 282-285, 2011

    [33] K. Saraswat, “Polycides, Salicides and Metal Gates” course presentation of Stanford University.
    https://web.stanford.edu/class/ee311/NOTES/Silicides%20&%20Metal%20gate%20Slides.pdf

    [34] L. J. Chen, “Metal Silicides: An Integral Part of Microelectronics,” JOM, vol. 57, no. 9, pp. 24-31, 2005.

    [35] Y. M. Thu and K. M. Latt, “Characterization of Titanium Silicide (TiSi2) for Complementary Metal Oxide Semiconductor,” AIP Conference Proceeding, vol. 1202, no. 1, pp.84-87, 2010.

    [36] J. A. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, R. Lindsay, and K. Maex, "Ni- and Co-based silicides for advanced CMOS applications", Microelectronic Engineering, vol. 70, no. 2- 4, pp.158-165, 2003.

    [37] Saraswat, “Interconnections: Silicides,” Stanford University.
    https://web.stanford.edu/class/ee311/NOTES/Silicides.pdf

    [38] P. Adusumilli et al, “Ti and NiPt/Ti Liner Silicide Contacts for Advanced Technologies,” Symp. on VLSI, pp.68-69, 2016.

    [39] Q. Xu and C. Hu, “New Ti-SALICIDE process using Sb and Ge preamorphization for sub-0.2 μm CMOS technology,” IEEE Trans.Electron Devices, vol. 45, no. 9, pp. 2002–2009, 1998.

    [40] S. Mao, G. Wang, J. Xu, D. Zhang, X. Luo, W. Wang, D. Chen, J. Li, A. Du, C. Zhao, T. Ye, and J. Luo, “Improved Ti germanosilicidation by Ge pre-amorphization implantation (PAI) for advanced contact technologies,” Microelectronic Engineering, vol. 201, pp. 1-5, 2018.

    [41] H. Yu, M. Schaekers, J. Zhang, L.-L. Wang, J.-L. Everaert, N. Horiguchi, Y.-L. Jiang, D. Mocuta, N. Collaert, and K. De Meyer, “TiSi(Ge) Contacts Formed at Low Temperature Achieving Around 2 × 10−9 cm2 Contact Resistivities to p-SiGe,” IEEE Transactions on Electron Devices, vol. 64, no. 2, pp. 500-506, 2017.

    [42] H. Wu, S.-C. Seo, C. Niu, W. Wang, G. Tsutsui, O. Gluschenkov, Z. Liu, A. Petrescu, A. Carr, S. Choi, S. Tsai, C. Park, I. Seshadri, A. Desilva, A. Arceo, G. Yang, M. Sankarapandian, C. Prindle, K. Akarvardar, C. Durfee, J. Yang, P. Adusumilli, B. Miao, J. Strane, W. Kleemeier, M. Raymond, K. Choi, F.-l. Lie, T. Yamashita, A. Knorr, D. Gupta, D. Guo, R. Divakaruni, H. Bu, and M. Khare, “Integrated Dual SPE Processes with Low Contact Resistivity for Future CMOS Technologies,” IEDM, pp. 22.3.1-22.3.4, 2017.

    [43] ASM website.
    https://qa.asm.com/solutions/products/epitaxy-products/intrepid-xp-epitaxy

    [44] J. L. Regolini and D. Bensahel, E. Scheid, and J. Mercier, “Selective epitaxial silicon growth in the 650-1100 °C range in a reduced pressure chemical vapor deposition reactor using dichlorosilane,” Applied Physics Letters, vol. 54, no. 658, 1989.

    [45] Scanning electron microscope, Wikipedia.
    https://en.wikipedia.org/wiki/Scanning_electron_microscope

    [46] M. Baghaban-Eslaminejad, A. Oryan, A. Kamali, and A. Moshiri, “ Chapter25-The Role of Nanomedicine, Nanotechnology, and Nanostructures on Oral Bone Healing, Modeling, and Remodeling,” Nanostructures for Oral Medicine, Micro and Nano Technologies, pp.777-832, 2017.

    [47] G. Zeng, Y. Duan, F. Besenbacher, and M. Dong, “Nanomechanics of Amyloid Materials Studied by Atomic Force Microscopy,” Aarhus University, Denmark.

    [48] LaserFocusWorld, “Surfscan wafer inspection platform from KLA-Tencor first to use DUV illumination,” 2011.
    https://www.laserfocusworld.com/test-measurement/test-measurement/article/16562823/surfscan-wafer-inspection-platform-from-klatencor-first-to-use-duv-illumination

    [49] B. Saha and P. Chakraborty, “MCsn+Biswajit Saha-SIMS: an innovative approach for direct compositional analysis of materialswithout standards,” Energy Procedia, vol. 41, pp. 80-109, 2013.

    [50] Christopher G. Pope, “X-Ray Diffraction and the Bragg Equation,” Journal of Chemical Education, vol. 74, no.1, 1997.

    [51] Scott A Speakman, “Introduction to High Resolution X-Ray Diffraction of Epitaxial Thin Films.”
    http://prism.mit.edu/xray/oldsite/Introduction%20to%20HRXRD.pdf

    [52] “The Rigaku Journal,” vol. 26, no. 2, 2010
    https://pdfs.semanticscholar.org/6844/daed3b6f8ebcd5f80023ef39ee311104c794.pdf?_ga=2.61280172.1660034098.1567268830-1923170373.1567268830

    [53] The Measurement of Sheet Resistivity.
    https://pvcdrom.pveducation.org/CHARACT/4pp.HTM

    [54] Micro Four-Point Probe General Application Note, CAPRES
    file:///C:/Users/user/Desktop/Application_note.pdf

    [55] Contact resistanceand TLM measurement
    http://tuttle.merc.iastate.edu/ee432/topics/metals/tlm_measurements.pdf

    [56] G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid-State Electron, vol. 25, no. 2, pp. 91-94, 1982.

    [57] H. Yu, M. Schaekers, T. Schram, E. Rosseel, K. Martens, S. Demuynck, N. Horiguchi,
    K. Barla, N. Collaert, K. De Meyer, and A. Thean, “Multiring Circular Transmission Line Model for Ultralow Contact Resistivity Extraction,” IEEE Electron Device Letter, vol. 36, no. 6, 2015.

    [58] H. Yu, M. Schaekers, T. Schram, N. Collaert, K. De Meyer, N. Horiguchi, A. Thean, and K. Barla, “A Simplified Method for (Circular) Transmission Line Model Simulation and Ultralow Contact Resistivity Extraction,” IEEE EDL., vol. 35, no. 9, 2014.

    [59] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of Current Crowding in Thin Film Contacts from Exact Field Solution,” J. Phys. D: Appl. Phys., vol. 48, 2015.

    [60] S.-L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.-W. Li, Y.-F. Lin, A. Aparecido-Ferreira, and K. Tsukagoshi, “Thickness-Dependent Interfacial Coulomb Scattering in Atomically Thin Field-Effect Transistors,” Nano Lett., vol. 13, no. 8, pp. 3546-3552, 2013.

    [61] J-L. Everaert, M. Schaekers, H. Yu, L.-L. Wang, A. Hikavyy, L. Date, J. del Agua Borniquel, K. Hollar, F. A. Khaja, W. Aderhold, A. J. Mayur, J.Y. Lee, H. van Meer, Y.-L. Jiang, K. De Meyer, D. Mocuta1, N. Horiguchi, “Sub-10-9 Ω.cm2 Contact Resistivity on p-SiGe Achieved by Ga Doping and Nanosecond Laser Activation,” Symposium on VLSI, 2017.

    [62] L.-L. Wang, H. Yu, M. Schaekers, J.-L. Everaert, A. Franquet, B. Douhard, L. Date, J. del Agua Borniquel, K. Hollar, F. A. Khaja, W. Aderhold, A. J. Mayur, J. Y. Lee, H. van Meer, D. Mocuta, N. Horiguchi, N. Collaert, K. De Meyer, and Y.-L. Jiang, “Comprehensive study of Ga activation in Si, SiGe and Ge with 5 × 10−10Ω·cm2contact resistivity achieved on Ga doped Ge using nanosecond laser activation,” IEDM, 2017.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE