研究生: |
施勛蓬 Shih, Hsun-Peng |
---|---|
論文名稱: |
具有電子聲子超導性之強拓樸狄拉克半金屬於鉍化鎳與鉍化鉑金屬的研究 Strong topological Dirac semimetal with electron-phonon superconductivity study on NiBi and PtBi metals |
指導教授: |
鄭弘泰
Jeng, Horng-Tay |
口試委員: |
林俊良
Lin, Chun-Liang 鄭澄懋 Cheng, Cheng-Maw |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 拓樸材料 、狄拉克半金屬 、電子聲子超導性 、密度泛函數理論 |
外文關鍵詞: | Density functional theory, Topological material, Dirac semimetal, Electron-phonon superconductivity |
相關次數: | 點閱:94 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二十世紀量子力學的發展,使我們能夠以量子的角度去探討材料的特性。
在1970 年代,密度泛函數理論有了堅實的理論基礎,被廣泛應用於凝態材料計
算領域,造就不需要實驗提供任何參數的第一原理蓬勃發展。
本文是對真實存在的材料鉍化鎳與鉍化鉑進行拓樸與超導特性的研究。理論
預測鉍化鎳與鉍化鉑金屬為具有 Z2 拓樸的電子聲子超導體。兩材料在塊材電
子能帶上有狄拉克點,並於表面電子能帶上有拓樸的表面態,判別兩材料屬於
拓樸狄拉克半金屬。利用威爾遜迴圈方法,觀察瓦尼爾函數中心演變判別兩材
料屬於強拓樸狄拉克半金屬且Z2拓樸數為1。利用電子聲子耦合的一階近似計
算,由麥克米蘭-艾倫-戴恩斯超導溫度公式判別兩材料屬於弱耦合的電子聲子
超導體。懷疑兼具超導與拓樸的材料比想像更加豐富,展望新穎材料能運用於
未來尖端科技。
The development of quantum mechanics in the twentieth century allowed us to explore the properties of materials from a quantum perspective. In the 1970s, density functional theory (DFT) had a solid theoretical foundation and was widely used in the field of condensed material calculations, making the first principle to flourish. This thesis is mainly to study the topological and superconducting properties of real materials. It is predicted that the NiBi and PtBi metals are electron-phonon superconductors with Z2 topology. Using the Wilson loop method and the electronic band structure to distinguish that both belong to the strong topological Dirac semimetal materials and use the McMillan-Allen-Dynes superconducting temperature formula
to distinguish that both belong weakly coupled electron-phonon superconductors. I suspect that materials with both topology and superconductivity are richer than imagined. Looking forward novel materials can be applied to most advanced science and technology in the future.
[1] Hohenberg, P. & Kohn, W. “Inhomogeneous electron gas.” Phys. Rev. B 136, B864 (1964).
[2] Kohn, W. & Sham, L. J. “Self-consistent equations including exchange and correlation effects.” Phys. Rev.140, 1133 (1965).
[3] Bardeen, J., Cooper, L. N. & Schrieffer, J. R. “Theory of superconductivity.” Phys. Rev. 108, 1175–1204 (1957).
[4] Allen, P. B. & Dynes, R. C. “Transition temperature of strong-coupled superconductors reanalyzed.” Phys. Rev. B 12, 905-922 (1975).
[5] Matthias, B. T., Geballe, T. H., & Compton, V. B., “Superconductivity.” Revs. Mod. Phys. 35, 1 (1963).
[6] Giustino, F. “Electron-phonon interactions from first principles.” Rev. Mod. Phys. 89, 015003 (2017).
[7] Giannozzi, P. et al. “Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials.” J. Phys. Condens. Matter 21, 395502 (2009).
[8] Bernevig, B. A. et al. “Quantum spin hall effect and topological phase transition in HgTe quantum wells.” Science 314, 1757–1761 (2006).
[9] König, M. et al. “Quantum spin hall insulator state in HgTe quantum wells.” Science 318, 766–770 (2007).
[10] Fu, L., Kane, C. L. & Mele, E. J. “Topological insulators in three dimensions.” Phys. Rev. Lett. 98, 106803 (2007).
[11] Murakami, S. “Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase.” New J. Phys. 9, 356 (2007).
[12] Fu, L. & Kane, C. L. “Topological insulators with inversion symmetry.” Phys. Rev. B 76, 045302 (2007).
[13] Hsieh, D. et al. “A topological Dirac insulator in a quantum spin hall phase.” Nature 452, 970–974 (2008).
[14] Xia, Y. et al. “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface.” Nature Phys. 5, 398–402 (2009).
[15] Hsieh, D. et al. “Observation of time-reversal-protected single-Dirac-cone spin-polarized topological-insulator states in Bi2Te3and Sb2Te3.” Phys. Rev. Lett. 103, 146401 (2009).
[16] Zhang, H. et al. “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.” Nature Phys. 5, 438–442 (2009).
[17] Zhang, H. J. et al. “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.” Nat. Phys. 5, 438–442 (2009).
[18] Qi, X.-L., Hughes, T. L. & Zhang, S. -C. “Topological field theory of time-reversal invariant insulators.” Phys. Rev. B 78, 195424 (2008).
[19] Dai, X., Hughes, T. L., Qi, X.-L., Fang, Z. & Zhang, S.-C. Helical edge and surface states in HgTe quantum wells and bulk insulators. Phys. Rev. B 77, 125319 (2008).
[20] Hasan, M. Z. & Kane, C. L. “Topological insulators.” Rev. Mod. Phys.82, 3045–3067 (2010).
[21] Qi, X. L. & Zhang, S. C. “Topological insulators and superconductors.” Rev. Mod. Phys. 83, 1057–1110 (2011).
[22] Moore, J. E. “The birth of topological insulators.” Nature 464, 194–198 (2010).
[23] Wang, Z. et al. “Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb).” Phys. Rev. B 85, 195320 (2012).
[24] Yang, B.-J. & Nagaosa, N. “Classification of stable three-dimensional Dirac semimetals with nontrivial topology.” Nat. Commun. 5, 4898 (2014).
[25] Liu, Z. K. et al. “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi.” Science 343, 864–867 (2014).
[26] Xu, S. et al. “Observation of Fermi arc surface states in a topological metal.” Science 347, 294–298 (2015).
[27] Armitage, N. P., Mele, E. J. & Vishwanath, A. “Weyl and Dirac semimetals in three-dimensional solids.” Rev. Mod. Phys. 90, 015001 (2018).
[28] Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. “Equivalent expression of Z2 topological invariant for band insulators using the non-abelian Berry connection.”
Phys. Rev. B 84, 075119 (2011).
[29] Setyawan, W. & Curtarolo, S. “High-throughput electronic band structure calculations: challenges and tools.” Comp. Mater. Sci. 4, 299-312 (2010).
[30] McMillan, W. L. “Transition temperature of strong-coupled superconductors.” Phys. Rev. 167, 331–344 (1968).
[31] Giles, R. “Reconstruction of gauge potentials from Wilson loops.” Phys. Rev. D 24, 2160 (1981).
[32] Wawrzik, D. et al. “Topological semimetals and insulators in three-dimensional honeycomb materials.” Phys. Rev. B 98, 115114 (2018).
[33] Lopez Sancho, M. N. et al. “Highly convergent schemes for the calculation of bulk and surface Green functions.” J. Phys. F: Met. Phys. 15 851 (1985)