簡易檢索 / 詳目顯示

研究生: 馮軒
Feng, Xuan
論文名稱: 在金(111)上 DPP 隨溫度的演變與超高真空加熱裝置的設計
DPP on Au(111): Evolution with Temperature Design of a UHV Heating Stage
指導教授: 霍夫曼
Germar, Hoffmann
口試委員: 唐述中
Tang, Shu-Jung
蘇維彬
Su, Wei-Bin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 90
中文關鍵詞: 掃描穿隧顯微鏡超高真空系統苯酚自組裝
外文關鍵詞: scanning tunneling microscopy, ultra-high vacuum, phenol, self-assembly
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 4-(4-Biphenylyl)2,6-Diphenylphenol (DPP) 有機分子在超高真空 (UHV) 環境下以 77 K 的溫度吸附於 Au(111) 表面,其自組裝行為透過掃描隧道顯微鏡 (STM) 進行表徵。我們觀察到令人驚訝的多種表面分子結構,這些結構與基底 Au(111) 的人字形重構相關,並且受分子覆蓋率與溫度影響。這些分子結構反映出分子-分子與分子-基底相互作用之間的競爭。其中,一種分子結構受到人字形重構的影響,導致局部對稱性的破壞。

    為了實現 DPP 分子中羥基的去氫作用,我們對樣品進行了逐步退火。目前,我們尚未找到證據表明在高溫退火 (T>260°C) 後,分子會發生去氫作用並形成 O-Au 配位鍵。去氫的具體溫度尚未確定,仍需進一步研究。

    此外,本論文介紹了一種新的退火系統,並闡述其設計概念、加熱模組的組裝過程及所遇到的問題。該系統的性能由 Arduino 裝置測量,並展示出精確的退火溫度控制 (±4 K)。


    The self-assembling behavior of organic 4-(4-Biphenylyl)2,6-Diphenylphenol (DPP) molecules adsorbed onto the Au(111) surface is characterized by scanning tunneling microscope (STM) at 77 K in an ultra-high vacuum (UHV) environment. A surprising variety of surface molecular structures is observed, which are related to the underlying Au(111) herringbone reconstruction, and these structures are coverage and temperature dependent. These molecular structures reflect a competition between molecule-molecule and molecule-substrate interactions. The herringbone reconstruction induces local symmetry breaking in one of the molecular structures.

    Stepwise annealing of the sample is performed to achieve dehydrogenation of the hydroxyl in DPP. So far, we have not found evidence that molecules are dehydrogenated to form O-Au coordination bonds after high-temperature annealing (T>260°C). The specific temperature for dehydrogenation has not yet been resolved. Further investigation is warranted.

    In addition, this thesis introduces a new annealing system and presents the design concepts behind it, as well as the assembly of the new heating stage and the issues encountered. The performance of the system is measured by an Arduino device and demonstrates a precise (±4 K) annealing temperature control.

    Abstract Chinese Abstract Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 5 2 Background . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Scanning Tunneling Mircoscope . . . . . . . . . . . . 7 2.1.2 Scanning Tunneling Spectroscopy . . . . . . . . . . . 8 2.2 Instrument . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Instrument . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Repair . . . . . . . . . . . . . . . . . . . . . . . 10 3 New Heating Stage . . . . . . . . . . . . . . . . . . . . 14 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Installed Heating Stage . . . . . . . . . . . . . . . . 15 3.3 Low Temperature Annealing . . . . . . . . . . . . . . . 16 3.3.1 discuss the problem . . . . . . . . . . . . . . . . . 18 3.4 Development of Heating Stage for Low Temperatures . . . 18 3.4.1 Structure . . . . . . . . . . . . . . . . . . . . . . 19 3.4.2 Materials . . . . . . . . . . . . . . . . . . . . . . 20 3.4.3 Component . . . . . . . . . . . . . . . . . . . . . . 21 3.4.4 Performance . . . . . . . . . . . . . . . . . . . . . 28 3.4.5 Discuss . . . . . . . . . . . . . . . . . . . . . . . 30 4 Experiment . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 C12-PDI . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 4-(4-Biphenylyl)2,6-Diphenylphenol . . . . . . . . . . 34 4.2.1 Molecule preparation . . . . . . . . . . . . . . . . 34 4.3 DPP on Au(111) . . . . . . . . . . . . . . . . . . . . 36 4.3.1 Structures . . . . . . . . . . . . . . . . . . . . . 38 4.3.2 Orientation and Chirality . . . . . . . . . . . . . . 53 4.3.3 After annealing at higher temperatures . . . . . . . 66 4.3.4 STS on DPP . . . . . . . . . . . . . . . . . . . . . 72 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Acknowledgment . . . . . . . . . . . . . . . . . . . . . 76 7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . 77 7.1 Drawings . . . . . . . . . . . . . . . . . . . . . . . 77

    [1] Lin Feng, Tao Wang, Zhijie Tao, Jianmin Huang, Guihang Li, Qian Xu,
    Steven L. Tait, and Junfa Zhu. Supramolecular tessellations at surfaces by vertex design. ACS Nano, 13(9):10603–10611, September 2019.
    [2] Antonela C. Marele, In´es Corral, Pablo Sanz, Rub´en Mas-Ballest´e, F´elix Zamora, Manuel Y´a˜nez, and Jos´e M. G´omez-Rodr´ıguez. Some pictures of
    alcoholic dancing: From simple to complex hydrogen-bonded networks based
    on polyalcohols. J. Phys. Chem. C, 117(9):4680–4690, March 2013.
    [3] Remy Pawlak, Sylvain Clair, Vincent Oison, Mathieu Abel, Oualid Ourdjini, Nikolas A. A. Zwaneveld, Didier Gigmes, Denis Bertin, Laurent Nony, and Louis Porte. Robust supramolecular network on ag(111): Hydrogen-bond enhancement through partial alcohol dehydrogenation. ChemPhysChem, 10(7):1032–1035, 2009.
    [4] J. Tersoff and D. R. Hamann. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett., 50:1998–2001, Jun 1983.
    [5] C. Julian Chen and Walter F. Smith. Introduction to Scanning Tunneling Microscopy, volume 62. 06 1994.
    [6] Hai-Ming Zhang, Jia-Wei Yan, Zhao-Xiong Xie, Bing-Wei Mao, and Xin Xu. Self-assembly of alkanols on au(111) surfaces. Chemistry – A European Journal, 12(15):4006–4013, 2006.
    [7] Qing Li, Biao Yang, Haiping Lin, Nabi Aghdassi, Kangjian Miao, Junjie Zhang, Haiming Zhang, Youyong Li, Steffen Duhm, Jian Fan, and Lifeng Chi. Surface-controlled mono/diselective ortho c–h bond activation. Journal of the American Chemical Society, 138(8):2809–2814, February 2016.
    [8] Y. Kitaguchi, A. Shiotari, H. Okuyama, S. Hatta, and T. Aruga. Imaging sequential dehydrogenation of methanol on cu(110) with a scanning tunneling microscope. The Journal of Chemical Physics, 134(17):174703, 05 2011.
    [9] Dandan Zhou, YouxiWang, DanWang, QingqingWang, Xiaolin Tan, Zhenyu
    Li, and Xiang Shao. Coverage- and temperature-dependent adsorption of
    phenol on the zno(101̅0) surface. J. Phys. Chem. C, 128(4):1685–1693,
    February 2024.
    [10] A. Kirakosian, M. J. Comstock, Jongweon Cho, and M. F. Crommie. Molecular commensurability with a surface reconstruction: Stm study of azobenzene on au(111). Phys. Rev. B, 71:113409, Mar 2005.
    [11] R. Shankar. Principles of Quantum Mechanics. Springer New York, NY, 2012.
    [12] Akash Gupta. On-surface polymerization. 2021.
    [13] Marco Di Giovannantonio, Massimo Tomellini, Josh Lipton-Duffin, Gianluca Galeotti, Maryam Ebrahimi, Albano Cossaro, Alberto Verdini, Neerav Kharche, Vincent Meunier, Guillaume Vasseur, Yannick Fagot-Revurat, Dmitrii F. Perepichka, Federico Rosei, and Giorgio Contini. Mechanistic picture and kinetic analysis of surface-confined ullmann polymerization. J. Am. Chem. Soc., 138(51):16696–16702, December 2016.
    [14] Luo-Uei Liang, Yu-Hsiung Yen, Chia-Wei Chou, Ko-Hsuan Mandy Chen,
    Hsiao-Yu Lin, Sheng-Wen Huang, Minghwei Hong, Jueinai Kwo, and Germar
    Hoffmann. Protected long-time storage of a topological insulator. AIP
    Advances, 11(2):025245, 02 2021.
    [15] Yuma Okuyama, Yuya Sugiyama, Shin ichiro Ideta, Kiyohisa Tanaka, and Toru Hirahara. Growth and atomic structure of tellurium thin films grown on bi2te3. Applied Surface Science, 398:125–129, 2017.
    [16] C. I. Fornari, P. H. O. Rappl, S. L. Morelh˜ao, T. R. F. Peixoto, H. Bentmann, F. Reinert, and E. Abramof. Preservation of pristine Bi2Te3 thin film topological insulator surface after ex situ mechanical removal of Te capping layer. APL Materials, 4(10):106107, 10 2016.
    [17] C. Y. Ho, R. W. Powell, and P. E. Liley. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1(2):279–421, 04 1972.
    [18] Stefano Sgobba. Materials for high vacuum technology: an overview. 21 Aug 2006.
    [19] Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva Zurek, and Geoffrey R Hutchison. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), August 2012.
    [20] Le Quang Nhat. On-surface polymerization of 3,10-di(bromomethyl)-
    [5]phenaceneon ag(111). 2024.
    [21] Lukas Krumbein, Kelvin Anggara, Martina Stella, Tomasz ichnowicz,
    Hannah Ochner, Sabine Abb, Gordon Rinke, Andr´e Portz, Michael D¨urr,
    Uta Schlickum, Andrew Baldwin, Andrea Floris, Klaus Kern, and Stephan
    Rauschenbach. Fast molecular compression by a hyperthermal collision gives bond-selective mechanochemistry. Phys. Rev. Lett., 126:056001, Feb 2021.
    [22] Margareta Wagner, Peter Puschnig, Stephen Berkebile, Falko P. Netzer, and Michael G. Ramsey. Alternating chirality in the monolayer h2tpp on cu(110)–(2 × 1)o. Phys. Chem. Chem. Phys., 15:4691–4698, 2013.
    [23] Darren W Johnson and Fraser Hof. Aromatic Interactions: Frontiers in Knowledge and Application. The Royal Society of Chemistry, 11 2016.
    [24] Ying Xu, Jun-Jie Duan, Zhen-Yu Yi, Ke-Xin Zhang, Ting Chen, and Dong Wang. Chirality of molecular nanostructures on surfaces via molecular assembly and reaction: manifestation and control. Surface Science Reports, 76(3):100531, 2021.
    [25] Yeh Yu Feng. Extended [n]phenacenes on ag(111). 2024.
    [26] J. V. Barth, H. Brune, G. Ertl, and R. J. Behm. Scanning tunneling microscopy observations on the reconstructed au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B, 42:9307–9318, Nov 1990.
    [27] Shobhana Narasimhan and David Vanderbilt. Elastic stress domains and the herringbone reconstruction on au(111). Phys. Rev. Lett., 69:2455–2455, Oct 1992.
    [28] U. Harten, A. M. Lahee, J. Peter Toennies, and Ch. W¨oll. Observation of a soliton reconstruction of au(111) by high-resolution helium-atom diffraction. Phys. Rev. Lett., 54:2619–2622, Jun 1985.
    [29] Yajie Bian, Junbo Cheng, Yuyi Zhang, Haitao Sun, Jun Zhang, Xiaolei Zhang, and Qingyuan Jin. Herringbone reconstruction-mediated assembly of 2-(hydroxymethyl)benzimidazole molecules on au(111) studied by scanning tunneling microscope. Chemical Physics Letters, 803:139799, 2022.
    [30] Felix Hanke and Jonas Bj¨ork. Structure and local reactivity of the au(111) surface reconstruction. Physical Review B, 87:235422, 2013.
    [31] Matthias B¨ohringer, Karina Morgenstern, Wolf-Dieter Schneider, Richard Berndt, Francesco Mauri, Alessandro De Vita, and Roberto Car. Twodimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett., 83:324–327, Jul 1999.
    [32] Roman Fasel, Manfred Parschau, and Karl-Heinz Ernst. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature, 439(7075):449–452, 2006.
    [33] Manfred Parschau, Sara Romer, and Karl-Heinz Ernst. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc., 126(47):15398–15399, December 2004.
    [34] Lokamani, Jeffrey Kelling, Robin Ohmann, J¨org Meyer, Tim K¨uhne, Gianaurelio Cuniberti, Jannic Wolf, Guido Juckeland, Thomas Huhn, Peter Zahn, Francesca Moresco, and Sibylle Gemming. Describing chain-like assembly of ethoxygroup-functionalized organic molecules on au(111) using highthroughput simulations. Scientific Reports, 11(1), July 2021.
    [35] StephenM. Driver, Tianfu Zhang, and DavidA. King. Massively cooperative adsorbate-induced surface restructuring and nanocluster formation. Angewandte Chemie International Edition, 46(5):700–703, 2007.
    [36] Fr´ed´eric Rossel, Pierre Brodard, Fran¸cois Patthey, Neville V. Richardson, and Wolf-Dieter Schneider. Modified herringbone reconstruction on au(111) induced by self-assembled azure a islands. Surface Science, 602(14):L115–L117, 2008.
    [37] Y. Kitaguchi, S. Habuka, T. Mitsui, H. Okuyama, S. Hatta, and T. Aruga. Comparative study of phenol and thiophenol adsorption on Cu(110). The Journal of Chemical Physics, 139(4):044708, 07 2013.
    [38] Elie Geagea, Judica¨el Jeannoutot, Michel F´eron, Frank Palmino,
    Christophe M. Thomas, Alain Rochefort, and Fr´ed´eric Ch´erioux. Collective radical oligomerisation induced by an stm tip on a silicon surface. Nanoscale, 13:349–354, 2021.
    [39] James Lawrence, Gabriele C. Sosso, Luka Dordevi´c, Harry Pinfold, Davide Bonifazi, and Giovanni Costantini. Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding. Nature Communications, 11(1):2103, 2020.

    QR CODE