簡易檢索 / 詳目顯示

研究生: 黃文杰
Huang, Wen-Chieh
論文名稱: 毫米波低雜訊放大器設計以及矽光子光載毫米波應用於5G相位陣列之收發機前端設計
Design of Millimeter-Wave Low-Noise Amplifiers and Silicon Photonics Radio-Over-Fiber Transceiver Front-End for 5G Phased Arrays
指導教授: 劉怡君
Liu, Yi-Chun
口試委員: 李俊興
Li, Chun-Hsing
李明昌
Lee, Ming-Chang
徐碩鴻
Hsu, Shuo-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 132
中文關鍵詞: 低雜訊放大器嵌入式技術矽光子第五代通訊協定光載毫米波功率放大器低相位變化的可變增益放大器相移器相位陣列
外文關鍵詞: low-noise amplifier, embedded technique, silicon photonics, 5G, radio-over-fiber, power amplifier, low phase variation variable gain amplifier, phase shifter, phased array
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著半導體產業的演進,毫米波頻段開始被大大地發展。在毫米波頻段中,人們致力於開發車用雷達,成像系統以及指向性傳輸等應用。本論文前兩個主題為研究毫米波頻段之低雜訊放大器。
    在現今4G LTE中,由於傳輸損耗以及遮蔽訊號等問題許多地下室或大商場中有一些地方會收不到訊號,這種現象在即將來臨的5G將更為嚴重。為了解決此問題,本論文的第三個研究主題為光載毫米波結合波束成形的K/Ka頻段收發機前端設計。
    第一個研究主題為W頻段之低雜訊放大器設計,我們使用TSMC 90-nm CMOS製程來實現。為了有較好的整體雜訊因子以及增益,我們使用cascade架構來提升整體增益以及運用noise measure 來進行設計考量。級間設計中,我們使用dc-coupling來進行設計,並且將級間中前級的實部輸出阻抗以及後級的實部輸入阻抗設計相近,僅並聯一條傳輸線來進行虛部阻抗匹配。如此一來,級間匹配網路所帶來的損耗可以有效地減少。最後我們成功實現noise measure為3.9的低雜訊放大器。
    第二個研究主題為200-GHz頻段之低雜訊放大器設計,我們使用TSMC 40-nm CMOS製程來實現。為了使各級有較大的本質增益,我們使用嵌入式技術來改變電晶體的增益狀態點,且使用cascade架構來提升整體增益。雜訊以及級間設計方面,使用了noise measure來優化整體雜訊因子以及使用dc-coupling來進行設計。最後我們成功實現增益大於30 dB的低雜訊放大器。
    第三個研究主題為K/Ka頻段之光載毫米波收發機電路設計,我們使用TSMC 90-nm CMOS製程來實現。在發射機中共設計兩顆晶片,其中第一顆為低雜訊放大器加上功率放大器。低雜訊放大器主要用來接收光電二極體所產生的電訊號,後級的功率放大器則用來進行訊號的放大,再經由天線傳輸出去。第二顆晶片為低雜訊放大器、移相器、可變增益放大器以及功率放大器以應用於光載毫米波結合波束成形。在接收機中設計了一顆晶片,為低雜訊放大器加上馬赫-曾德爾干涉儀驅動電路。低雜訊放大器用來接收天線傳來的訊號,後面的馬赫-曾德爾干涉儀驅動電路則是用來放大電壓擺幅來驅動後級的馬赫-曾德爾干涉儀。


    Due to the development of semiconductor industry, the applications of millimeter wave are widely explored in recent years. For example, automotive radar, imaging system and high data rate wireless communication have obvious help in these industries. In this thesis, the first and the second chapters will be focused on millimeter wave low-noise amplifiers.
    In the 4G LTE, due to the transmission loss and blockage problem, specific areas in big shopping mall or basement can not receive signal. This phenomenon will be more serious in the upcoming 5G era. In order to solve these problems, the third chapter of my thesis will focus on radio-over-fiber with beam-forming K/Ka band transceiver front-ends.
    In the first chapter, the TSMC 90-nm CMOS is used to design W-band low-noise amplifier. In order to enhance total power gain, the cascade topology is used. Moreover, for better noise factor, the noise measure is used as design concept. In inter-stage design, dc-coupling is used to match, and the real parts of the previous stage output impedance have been designed close with the next stage input impedance. Therefore, only required a transmission line to match imaginary parts, and the insertion loss of inter-stage matching network can be reduced effectively. Thus, the noise measure achieves 3.9 in this work.
    In the second chapter, the TSMC 40-nm CMOS is used to design 200-GHz low-noise amplifier. For larger maximum available gain of a single stage common source, the embedding technique is used to adjust gain state point, and the cascade topology is used to enhance total power gain. In the design of noise and inter-stage matching network, the noise measure is used as design concept to optimize total noise factor, and the dc-coupling is used to match. Hence, the power gain is larger than 30 dB in this work.
    In the third chapter, the TSMC 90-nm CMOS is used to design K/Ka band radio-over-fiber transceiver front-ends. In transmitter design, there are two works which will be presented. The first work is low-noise amplifier and power amplifier. A low-noise amplifier is used to receive electrical signal from photo-diode, and a power amplifier is designed after low-noise amplifier to amplify signal to antennas. The second work is low-noise amplifier, 4-bit phase shifter, variable gain amplifier and power amplifier for the applications of radio-over-fiber beam-forming. In receiver design, one work will be presented, and this work is low-noise amplifier and Mach-Zehnder Modulator (MZM) driver. A low-noise amplifier is used to receive signal from antenna, and a MZM driver is used to amplify voltage swing to drive MZM.

    摘要 i ABSTRACT iii Contents v List of Figures vii List of Tables xiv Chapter 1 Introduction 1 1.1. Background 1 1.2. W-band and mm-band Applications 2 1.3. Motivations of Silicon Photonics Radio-Over-Fiber Transceiver Front-End for 5G Phased Arrays 2 Chapter 2 A W-Band Low-Noise Amplifier using Noise Measure Design Concept in 90-nm CMOS 5 2.1. Fundamentals 5 2.1.1 Architecture 5 2.1.2 Noise Measure 5 2.2. Circuit Design 7 2.2.1 Core Circuit 7 2.2.2 Simulation and Measurement Results 16 2.2.3 Conclusion and Discussion 21 Chapter 3 A 200-GHz Low-Noise Amplifier using Embedding Technique in 40-nm CMOS 23 3.1. Fundamentals 23 3.1.1 Power Gain 23 3.1.2 Gain Plane 24 3.1.3 Embedding Network 29 3.2. Circuit Design 31 3.2.1 Core Circuit 31 3.2.2 Simulation and Measurement Results 37 3.2.3 Conclusion and Discussion 42 Chapter 4 Silicon Photonics Radio-Over-Fiber Transceiver Front-End for 5G Phased Arrays in 90-nm CMOS 45 4.1. Fundamentals 45 4.2. Circuit Design of Work A and Work B 46 4.2.1 LNA Design 47 4.2.2 PA Design 49 4.2.3 Simulation and Measurement Results of Work A 58 4.2.4 Simulation and Measurement Results of Work B 72 4.2.5 Conclusion and Discussion 79 4.3. Circuit Design of Work C 81 4.3.1 LNA and 4-Bit Phase Shifter (PS) Design 81 4.3.2 Low-Phase Variation VGA Design 92 4.3.3 PA Design 102 4.3.4 Simulation and Measurement Results 113 4.3.5 Conclusion and Discussion 122 Chapter 5 Conclusion and Future Work 126 Reference 128

    [1] https://en.wikipedia.org/wiki/Radio_spectrum#cite_note-ieee-10
    [2] Guillermo Gonzalez, Microwave transistor amplifiers: analysis and design, Vol.2. New Jersey: Prentice hall, 1997.
    [3] https://alldatasheet.com/datasheet-pdf/pdf/849261/FINISAR/XPDV2320R.html
    [4] S. C. Cripps, RF Power Amplifiers for Wireless Communication, 1st ed. Artech House, 1999.
    [5] http://zuomin.blogspot.com/2009/11/rf.html
    [6] M. M. Nahas, “Optimization of Passive Indoor DAS Network Planning Using SMF-Based All-Optical Channeling,” vol. 6, no. 1, pp. 8–12, 2016.
    [7] G. Feng, C. C. Boon, F. Meng, X. Yi and C. Li, “An 88.5–110 GHz CMOS Low-Noise Amplifier for Millimeter-Wave Imaging Applications,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 2, pp. 134-136, Feb. 2016.
    [8] S. Peng, J. Huang, H and Y. Chen, “A 76–98 GHz Broadband Low-DC Power Low Noise Amplifier Using Coplanar Waveguide in 40 NM CMOS Process,” 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2018, pp. 663-665.
    [9] Feng, G., C. C. Boon, F. Meng, X. Yi, C. Li, and H. C. Luong, “Pole-converging intrastage bandwidth extension technique for wideband amplifiers,” IEEE J. Solid-State Circuits, Vol. 52, No. 3, 769–780, Mar. 2017.
    [10] P. Yeh and C. Kuo, “A 94 GHz 10.8 mW Low-Noise Amplifier With Inductive Gain Boosting in 40 nm Digital CMOS Technology,” 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Singapore, 2019, pp. 1357-1359.
    [11] D. Pepe and D. Zito, “32 dB Gain 28 nm Bulk CMOS W-Band LNA,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 55-57, Jan. 2015.
    [12] B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “W-band amplifiers with 6 dB noise figure and milliwatt-level 170–200-GHz doublers in 45 nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 692–701, Mar. 2012.
    [13] P. Yeh and C. Kuo, “A W-Band 6.8 mW Low-Noise Amplifier in 90 nm CMOS Technology using Noise Measure,” 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-4.
    [14] C. Li, W. Hsieh and T. Chiu, “A Flip-Chip-Assembled W-Band Receiver in 90-nm CMOS and IPD Technologies,” in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1628-1639, April 2019.
    [15] S. Mason, “Power gain in feedback amplifier,” IEEE Trans. Circuit Theory, vol. CT-1, no. 2, pp. 20-25, Feb. 1954.
    [16] Z. Wang and P. Heydari, “A Study of Operating Condition and Design Methods to Achieve the Upper Limit of Power Gain in Amplifiers at Near- f_max Frequencies,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 261-271, Feb. 2017.
    [17] A. Singhakowinta, A. R. Boothroyd, “Gain capability of two-port amplifiers,” Int. J. Electron., vol. 21, no. 6, pp. 549-560, 1966.
    [18] M. S. Gupta, “Power gain in feedback amplifiers, a classic revisited,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 5,pp. 864–879,May 1992.
    [19] H. Bameri and O. Momeni, “A High-Gain mm-Wave Amplifier Design: An Analytical Approach to Power Gain Boosting,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 357-370, Feb. 2017.
    [20] H. Khatibi, S. Khiyabani and E. Afshari, “A 173 GHz Amplifier With a 18.5 dB Power Gain in a 130 nm SiGe Process: A Systematic Design of High-Gain Amplifiers Above f_max/2,” in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 201-214, Jan. 2018.
    [21] C. Ko, C. Li, C. Kuo, M. Kuo and D. Chang, “A 210-GHz Amplifier in 40-nm Digital CMOS Technology,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 6, pp. 2438-2446, June 2013.
    [22] N. Van Thienen and P. Reynaert, “A 160-GHz three-stage fully-differential amplifier in 40-nm CMOS,” 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), Marseille, 2014, pp. 144-147.
    [23] D. Parveg, M. Varonen, D. Karaca, A. Vahdati, M. Kantanen and K. A. I. Halonen, “Design of a D-Band CMOS Amplifier Utilizing Coupled Slow-Wave Coplanar Waveguides,” in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1359-1373, March 2018.
    [24] K. Katayama, K. Takano, S. Amakawa, T. Yoshida and M. Fujishima, “14.4-dB CMOS D-band low-noise amplifier with 22.6-mW power consumption utilizing bias-optimization technique,” 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
    [25] Y. Li, P. Chiu, K. Li, D. J. Thomson, G. T. Reed and S. S. H. Hsu, “A 40-Gb/s 4-Vpp Differential Modulator Driver in 90-nm CMOS,” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 73-75, Jan. 2018.
    [26] Z. Liu, P. Gao and Z. Chen, “A K-band low noise amplifier with on-chip baluns in 90nm CMOS,” 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sendai, 2015, pp. 241-243.
    [27] Filipe Tabarani, Hermann Schumacher, “A 32.8 dB gain 3.5 dB NF 7 mW 20.35 GHz LNA with embedded 30 GHz band-stop filter,” Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) 2017 IEEE, pp. 78-81, 2017.
    [28] Y. Lee, T. Chen and J. Y. Liu, “An adaptively biased stacked power amplifier without output matching network in 90-nm CMOS,” 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 1667-1690.
    [29] T. Huang, Y. Lin and H. Wang, “A K-Band adaptive-bias power amplifier with enhanced linearizer using 0.18-µm CMOS process,” 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-3.
    [30] B. Min and G. M. Rebeiz, “Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends,” in IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008.
    [31] S. Shakib, M. Elkholy, J. Dunworth, V. Aparin and K. Entesari, “A Wideband 28-GHz Transmit–Receive Front-End for 5G Handset Phased Arrays in 40-nm CMOS,” in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 2946-2963, July 2019.
    [32] Dong-Woo Kang, Hui Dong Lee, Chung-Hwan Kim and Song cheol Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-um CMOS technology,” in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 294-301, Jan. 2006.
    [33] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, “60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013.
    [34] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, “Analysis and Compensation of Phase Variations Versus Gain in Amplifiers Verified by SiGe HBT Cascode RFIC,” in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
    [35] H. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, “Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April 2013.
    [36] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, “An ultra low-cost 32-element 28 GHz phased-array transceiver with 41 dBm EIRP and 1.0–1.6 Gbps 16-QAM link at 300 meters,” 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 73-76.
    [37] C. Liu et al., “A Ka-Band Single-Chip SiGe BiCMOS Phased-Array Transmit/Receive Front-End,” in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3667-3677, Nov. 2016.
    [38] H. Kim et al., “A 28-GHz CMOS Direct Conversion Transceiver With Packaged 2 X 4 Antenna Array for 5G Cellular System,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1245-1259, May 2018.
    [39] U. Kodak and G. M. Rebeiz, “A 5G 28-GHz Common-Leg T/R Front-End in 45-nm CMOS SOI With 3.7-dB NF and −30-dBc EVM With 64-QAM/500-MBaud Modulation,” in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 1, pp. 318-331, Jan. 2019.
    [40] B. Sadhu et al., “A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 128-129, Feb. 2017.

    QR CODE