簡易檢索 / 詳目顯示

研究生: 謝秉翰
Ping-Han HSieh
論文名稱: MTF-1鋅指區域與蛋白質核定位作用之研究
The role of zinc fingers on the nuclear localization of MTF-1
指導教授: 林立元
Lih-Yuan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 58
中文關鍵詞: MTF-1鋅指區核定位核定位信號
外文關鍵詞: MTF-1, zinc finger, nuclear localization, NLS
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MTF-1是一個具有六個C2H2類型zinc finger的轉錄蛋白,能與MT啟動子上的MRE序列 (TGCRCNC) 結合,藉此調控MT基因的基礎表現,或是金屬誘導時的表現。已知在細胞受到鋅刺激後,MTF-1會由快速地由細胞質進入細胞核,然而,MTF-1以何作為核定位信號,至今仍是不清楚的。在我們的實驗中,將MTF-1的片段與eGFP融合,利用螢光顯微鏡與西方墨點法分析其在細胞中的分佈。結果發現將MTF-1的前兩個zinc finger與後四個zinc finger分別與eGFP融合,其融合蛋白都會累積於細胞核。因此推測MTF-1的zinc finger區域中可能具有兩個功能獨立的NLS。此外,我們也更進一步地證實它們的核定位作用是不需要zinc finger三級結構的完整性以及與DNA的結合活性。我們也觀察到MTF-1的 N端序列 (1-136 amino acid) 可能會抑制核定位作用。我們另外再利用點突變的方法破壞zinc finger的結構,以觀察各個zinc finger在金屬誘導MTF-1進核的過程中的重要性,同時也發現zinc finger的三級結構可能參與MTF-1進核的調控。綜合上述的實驗的結果,指出MTF-1利用zinc finger中的兩個NLS進入細胞核,並藉由N端序列以及六個zinc finger的共同調控MTF-1的進核。


    Metal-responsive transcription factor 1 (MTF-1) is a transcription factor that contains six C2H2¬¬ zinc fingers and is essential for basal and heavy metal-induced MT gene expression by binding to MRE (TGCRCNC) in the MT promoter. It was previously shown that MTF-1 rapidly translocates to the nucleus in response to zinc exposure. However, regions within the MTF-1 protein that serve as nuclear localization signal (NLS) remain unclear. In our study, enhanced green fluorescent protein (eGFP) was fused with MTF-1, and their subcellular localization was examined by fluorescence microscopy and Western blot. Fusion of eGFP with the first two zinc fingers of MTF-1 and with the last four zinc fingers of MTF-1 respectively led the protein to accumulate in the nucleus. Thus, we suggest that there may be two NLS with independent functions in MTF-1. Furthermore, we demonstrated neither the tertiary structure of the zinc fingers nor the DNA binding activity of the protein are necessary for nuclear localization. We also noted that the N-terminal domain of MTF-1 (1-136 amino acid) appears to inhibit nuclear localization. We create the mutant of MTF-1 containing histidine to alanine mutations that disrupt the structure of each zinc individually to identify the different significance of each zinc figure. At the same time, we observe tertiary structure of zinc finger also involved in regulating nuclear import. These data suggest that two nuclear localization signals in the zinc finger domain direct MTF-1 to nucleus and that N-terminal domain and six zinc fingers regulate nuclear import of MTF-1 cooperatively.

    目次 摘要...................1 序言...................4 材料與方法............10 結果..................20 討論..................31 參考文獻..............37 圖表..................45

    Andrews, G.K. (1990) Regulation of metallothionein gene expression. Prog Food Nutr Sci, 14, 193-258.

    Andrews, G.K. (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol, 59, 95-104.

    Auf der Maur, A., Belser, T., Elgar, G., Georgiev, O. and Schaffner, W. (1999) Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biol Chem, 380, 175-185.

    Baake, M., Bauerle, M., Doenecke, D. and Albig, W. (2001) Core histones and linker histones are imported into the nucleus by different pathways. Eur J Cell Biol, 80, 669-677.

    Beg, A.A., Ruben, S.M., Scheinman, R.I., Haskill, S., Rosen, C.A. and Baldwin, A.S., Jr. (1992) I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev, 6, 1899-1913.

    Bittel, D., Dalton, T., Samson, S.L., Gedamu, L. and Andrews, G.K. (1998) The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem, 273, 7127-7133.

    Blijenberg, B.G., Eman, I., Boeve, E.R., Mossner, E. and Uhl, W. (1995) The analytical and clinical performance of the new Boehringer Mannheim Enzymun-Test PSA assay for prostate-specific antigen. Eur J Clin Chem Clin Biochem, 33, 383-392.

    Boulikas, T. (1994) Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem, 55, 32-58.

    Bruening, W., Moffett, P., Chia, S., Heinrich, G. and Pelletier, J. (1996) Identification of nuclear localization signals within the zinc fingers of the WT1 tumor suppressor gene product. FEBS Lett, 393, 41-47.

    Brugnera, E., Georgiev, O., Radtke, F., Heuchel, R., Baker, E., Sutherland, G.R. and Schaffner, W. (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res, 22, 3167-3173.

    Chen, W.Y., John, J.A., Lin, C.H. and Chang, C.Y. (2002) Molecular cloning and developmental expression of zinc finger transcription factor MTF-1 gene in zebrafish, Danio rerio. Biochem Biophys Res Commun, 291, 798-805.

    Chook, Y.M. and Blobel, G. (2001) Karyopherins and nuclear import. Curr Opin Struct Biol, 11, 703-715.

    Christianson, D.W. (1991) Structural biology of zinc. Adv Protein Chem, 42, 281-355.

    Christophe, D., Christophe-Hobertus, C. and Pichon, B. (2000) Nuclear targeting of proteins: how many different signals? Cell Signal, 12, 337-341.

    Chung, C.T., Niemela, S.L. and Miller, R.H. (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A, 86, 2172-2175.

    Cingolani, G., Petosa, C., Weis, K. and Muller, C.W. (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature, 399, 221-229.

    Coleman, J.E. (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem, 61, 897-946.

    Conti, E., Uy, M., Leighton, L., Blobel, G. and Kuriyan, J. (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell, 94, 193-204.

    Dalton, T., Palmiter, R.D. and Andrews, G.K. (1994) Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res, 22, 5016-5023.

    Dalton, T.P., Bittel, D. and Andrews, G.K. (1997) Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol Cell Biol, 17, 2781-2789.

    Dalton, T.P., Li, Q., Bittel, D., Liang, L. and Andrews, G.K. (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem, 271, 26233-26241.

    Dingwall, C., Sharnick, S.V. and Laskey, R.A. (1982) A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell, 30, 449-458.

    Engel, K., Kotlyarov, A. and Gaestel, M. (1998) Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. Embo J, 17, 3363-3371.

    Goldhaber, S.B. (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol, 38, 232-242.

    Gorlich, D. and Kutay, U. (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol, 15, 607-660.

    Green, C.J., Lichtlen, P., Huynh, N.T., Yanovsky, M., Laderoute, K.R., Schaffner, W. and Murphy, B.J. (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res, 61, 2696-2703.

    Gunes, C., Heuchel, R., Georgiev, O., Muller, K.H., Lichtlen, P., Bluthmann, H., Marino, S., Aguzzi, A. and Schaffner, W. (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. Embo J, 17, 2846-2854.

    Hamdi, S.A., Nassif, O.I. and Ardawi, M.S. (1997) Effect of marginal or severe dietary zinc deficiency on testicular development and functions of the rat. Arch Androl, 38, 243-253.

    Kalderon, D., Richardson, W.D., Markham, A.F. and Smith, A.E. (1984a) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature, 311, 33-38.

    Kalderon, D., Roberts, B.L., Richardson, W.D. and Smith, A.E. (1984b) A short amino acid sequence able to specify nuclear location. Cell, 39, 499-509.

    Koizumi, S., Suzuki, K., Ogra, Y., Gong, P. and Otuska, F. (2000) Roles of zinc fingers and other regions of the transcription factor human MTF-1 in zinc-regulated DNA binding. J Cell Physiol, 185, 464-472.

    Kozak, M. (1989) The scanning model for translation: an update. J Cell Biol, 108, 229-241.

    Langmade, S.J., Ravindra, R., Daniels, P.J. and Andrews, G.K. (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem, 275, 34803-34809.

    Lichtlen, P., Wang, Y., Belser, T., Georgiev, O., Certa, U., Sack, R. and Schaffner, W. (2001) Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res, 29, 1514-1523.

    MacDonald, R.S. (2000) The role of zinc in growth and cell proliferation. J Nutr, 130, 1500S-1508S.

    Matheny, C., Day, M.L. and Milbrandt, J. (1994) The nuclear localization signal of NGFI-A is located within the zinc finger DNA binding domain. J Biol Chem, 269, 8176-8181.

    Mattaj, I.W. and Englmeier, L. (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem, 67, 265-306.

    Moroianu, J., Blobel, G. and Radu, A. (1995a) Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc Natl Acad Sci U S A, 92, 2008-2011.

    Moroianu, J., Hijikata, M., Blobel, G. and Radu, A. (1995b) Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci U S A, 92, 6532-6536.

    Murphy, B.J., Andrews, G.K., Bittel, D., Discher, D.J., McCue, J., Green, C.J., Yanovsky, M., Giaccia, A., Sutherland, R.M., Laderoute, K.R. and Webster, K.A. (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res, 59, 1315-1322.

    Palmiter, R.D., Findley, S.D., Whitmore, T.E. and Durnam, D.M. (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A, 89, 6333-6337.

    Pandya, K. and Townes, T.M. (2002) Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1. J Biol Chem, 277, 16304-16312.

    Patrick, L. (2003) Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev, 8, 106-128.

    Phillips, R.S., Ramos, S.B. and Blackshear, P.J. (2002) Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem, 277, 11606-11613.

    Pollard, V.W., Michael, W.M., Nakielny, S., Siomi, M.C., Wang, F. and Dreyfuss, G. (1996) A novel receptor-mediated nuclear protein import pathway. Cell, 86, 985-994.

    Prasad, A.S. (1998) Zinc and immunity. Mol Cell Biochem, 188, 63-69.

    Quadrini, K.J. and Bieker, J.J. (2002) Kruppel-like zinc fingers bind to nuclear import proteins and are required for efficient nuclear localization of erythroid Kruppel-like factor. J Biol Chem, 277, 32243-32252.

    Radtke, F., Georgiev, O., Muller, H.P., Brugnera, E. and Schaffner, W. (1995) Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res, 23, 2277-2286.

    Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z. and Schaffner, W. (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. Embo J, 12, 1355-1362.

    Ribbeck, K. and Gorlich, D. (2001) Kinetic analysis of translocation through nuclear pore complexes. Embo J, 20, 1320-1330.

    Robbins, J., Dilworth, S.M., Laskey, R.A. and Dingwall, C. (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell, 64, 615-623.

    Saydam, N., Georgiev, O., Nakano, M.Y., Greber, U.F. and Schaffner, W. (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem, 276, 25487-25495.

    Schwamborn, K., Albig, W. and Doenecke, D. (1998) The histone H1(0) contains multiple sequence elements for nuclear targeting. Exp Cell Res, 244, 206-217.

    Searle, P.F., Stuart, G.W. and Palmiter, R.D. (1987) Metal regulatory elements of the mouse metallothionein-I gene. Experientia Suppl, 52, 407-414.

    Shields, J.M. and Yang, V.W. (1997) Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins. J Biol Chem, 272, 18504-18507.

    Shimojo, M., Lee, J.H. and Hersh, L.B. (2001) Role of zinc finger domains of the transcription factor neuron-restrictive silencer factor/repressor element-1 silencing transcription factor in DNA binding and nuclear localization. J Biol Chem, 276, 13121-13126.

    Siomi, H. and Dreyfuss, G. (1995) A nuclear localization domain in the hnRNP A1 protein. J Cell Biol, 129, 551-560.

    Smirnova, I.V., Bittel, D.C., Ravindra, R., Jiang, H. and Andrews, G.K. (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem, 275, 9377-9384.

    Stuart, G.W., Searle, P.F., Chen, H.Y., Brinster, R.L. and Palmiter, R.D. (1984) A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A, 81, 7318-7322.

    Stuart, G.W., Searle, P.F. and Palmiter, R.D. (1985) Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature, 317, 828-831.

    Tchounwou, P.B., Ayensu, W.K., Ninashvili, N. and Sutton, D. (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol, 18, 149-175.

    Uchida, Y., Takio, K., Titani, K., Ihara, Y. and Tomonaga, M. (1991) The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron, 7, 337-347.

    Vallee, B.L. and Auld, D.S. (1990) Active-site zinc ligands and activated H2O of zinc enzymes. Proc Natl Acad Sci U S A, 87, 220-224.

    Vandromme, M., Gauthier-Rouviere, C., Lamb, N. and Fernandez, A. (1996) Regulation of transcription factor localization: fine-tuning of gene expression. Trends Biochem Sci, 21, 59-64.

    Weighardt, F., Biamonti, G. and Riva, S. (1995) Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. J Cell Sci, 108 ( Pt 2), 545-555.

    Westin, G. and Schaffner, W. (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. Embo J, 7, 3763-3770.

    Yamasaki, H., Sekimoto, T., Ohkubo, T., Douchi, T., Nagata, Y., Ozawa, M. and Yoneda, Y. (2005) Zinc finger domain of Snail functions as a nuclear localization signal for importin beta-mediated nuclear import pathway. Genes Cells, 10, 455-464.

    Yang, M., May, W.S. and Ito, T. (1999) JAZ requires the double-stranded RNA-binding zinc finger motifs for nuclear localization. J Biol Chem, 274, 27399-27406.

    Yu, Z., Lee, C.H., Chinpaisal, C. and Wei, L.N. (1998) A constitutive nuclear localization signal from the second zinc-finger of orphan nuclear receptor TR2. J Endocrinol, 159, 53-60.

    Zhang, B., Egli, D., Georgiev, O. and Schaffner, W. (2001) The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol, 21, 4505-4514.

    Zhang, Y. and Xiong, Y. (2001) A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science, 292, 1910-1915.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE