研究生: |
逯仲倫 LU, Chung-Lun |
---|---|
論文名稱: |
以情境釋義於互動戲劇中的玩家動作 Context-dependent Action Interpretation in Interactive Storytelling |
指導教授: |
蘇豐文
Soo, Von-Wun |
口試委員: |
錢炳全
Chien, Been-Chian 賴尚宏 Lai, Shang-Hong |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 互動式戲劇 、動作釋義 |
外文關鍵詞: | interactive storytelling, action interpretation |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們用不同的情境資料去釋義互動戲劇中的玩家動作。首先,我們提出一個針對使用者動作的正規表示法,叫做動作正規表示法(Action Regular Expression),動作正規表示法可以視為傳統用於編譯器的正規表示法的延伸,只是針對玩家動作的特性加上新的運算子。在擷取和辨識使用者的身體關節點方面,我們使用微軟的Kinect 感應器,針對我們的應用,我們用動作正規表示法定義了八個動作;動作辨識的實驗是由六個受測者針對不同模式去反覆執行這八個動作,而最後得到的平均準確率是86%。辨識出動作後,一串動作背後的意圖由動作釋義器(action interpreter)來決定,動作釋義器包涵了一個plan library和分類器,這個plan library內建有75 個plan,我們使用支持向量機(support vector machine)去學習這個plan library,為了找到支持向量機學習時的最佳參數,我們跑了110 筆不同的參數組合,而最後得到的最佳參數可讓學習出的model擁有94.74%的高準確率。
In this thesis, a context-dependent action interpreter for interactive storytelling is proposed. At first, a regular expression for actions, named Action Regular Expression (ARE), is proposed; in fact, ARE can be thought as an extension of traditional regular expression, new operators are defined to deal with the properties of actions. To acquire and recognize user’s body joints, a Microsoft Kinect sensor is used; then eight actions are defined and recognized via ARE. The experiment runs on six subjects and the obtained total average accuracy is 86%. To interpret user’s actions, an action interpreter is defined which contains a plan library and the classifier. The plan library with 75 similar plans is built, and due to the ability of maximizing data margins, support vector machine is applied to learn the plan library. To get the optimal parameters for the support vector machine, a set of 110 combinations are tried; at final, a trained model with 94.74% accuracy is obtained while choosing the optimal parameters.
[1] Alpaydin, E. 2004. Introduction to machine learning. The MIT Press.
[2] Bee, N., Wagner, J., André, E., Vogt, T., Charles, F., Pizzi, D. and Cavazza, M. 2010. Discovering eye gaze behavior during human-agent conversation in an interactive storytelling application. In Proceedings of the 12th International Conference on Multimodal and the 7th Workshop on Machine Learning for Multimodal Interaction.
[3] Cavazza, M., Martin, O., Charles, F., Mead, S. J., Marichal, X. and Nandi, A. 2004. Multimodal acting in mixed reality interactive storytelling. IEEE Multimedia, July-Septemver 2004, 11(3): 30-39.
[4] Chang, C. C. and Lin, C. J. 2011. Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3): 27:1 - 27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[5] Chang, H. M. and Soo, V. W. 2010. Emergent narrative generation with social planning agents. Dissertation, National Tsing Hua University, Taiwan (R.O.C.).
[6] Cortes, C. and Vapnik, V. 1995. Support-vector networks. Machine Learning, 20: 273-297.
[7] Doirado, E. and Martinho, C. 2010. I mean it! detecting user intentions to create believable behaviour for virtual agents in games. In Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems.
[8] Heinze, C. 2003. Modelling intention recognition for intelligent agent systems. Dissertation, University of Melbourne, Australia.
[9] Kinect for Windows SDK, http://www.microsoft.com/en-us/kinectforwindows/develop/
[10] Leyvand, T., Meekhof, C., Wei, Y. C., Sun, J. and Guo, B. 2011. Kinect identity: technology and experience. IEEE Computer, 44(4): 94-96.
[11] Louden, K. C. 1997. Compiler construction principles and practice. PWS Publishing Company.
[12] Lv, F. and Nevatia, R. 2006. Recognition and segmentation of 3-d human action using hmm and multiclass adaboost. In Proceedings of the 9th European Conference on Computer Vision, 4: 359-361.
[13] Mateas, M. and Stern, A. 2003. Façade: an experiment in building a fully-realized interactive drama. In Game Developer’s Conference: Game Design Track.
[14] Mateas, M. and Stern, A. 2005. Structuring content in the façade interactive drama architecture. In Proceedings of the 1st Artificial Intelligence and Interactive Digital Entertainment Conference.
[15] Moore, D. and Essa, I. 2002. Recognizing multitasked activities from video using stochastic context-free grammar. In Proceedings of the 18th National Conference on Artificial Intelligence.
[16] Oliver, N., Horvitz, E. and Garg, A. 2002. Layered representations for human activity recognition. In Proceedings of the 4th IEEE International Conference on Multimodal Interaction.
[17] Pereira, L.M. and Anh, H. T. 2009. Intention recognition via causal bayes networks plus plan generation. In Proceedings of the 14th Portuguese International Conference on Artificial Intelligence: 138-149.
[18] Pereira, L.M. and Anh, H. T. 2009. Elder care via intention recognition and evolution prospection. In Proceedings of the 18th International Conference on Applications of Declarative Programming and Knowledge Management.
[19] Porteous, J., Cavazza, M. and Charles, F. 2010. Applying planning to interactive storytelling: narrative control using state constraints. ACM Transactions on Intelligent Systems and Technology, 1(2).
[20] Sadri, F. 2010. Logic-based approaches to intention recognition. In Handbook of Research on Ambient Intelligence: Trends and Perspectives.
[21] Schuldt, C., Laptev, I. and Caputo, B. 2004. Recognizing human actions: a local svm approach. In Proceedings of the 17th International Conference on Pattern Recognition, 3: 32-36.
[22] Searle, J. R. 1983. Intentionality, an essay in the philosophy of mind. Cambridge University Press.