簡易檢索 / 詳目顯示

研究生: 林庭煒
Lin, Ting-Wei
論文名稱: 一個可自我測試K氏平方器
A Self-Testable Karatsuba Squarer
指導教授: 徐永珍
張慶元
口試委員: 陳竹一
徐永珍
楊信佳
張慶元
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 半導體元件及製程產業研發碩士專班
Industrial Technology R&D Master Program on Semiconductor Devices and Manufacturing Process
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 50
中文關鍵詞: 平方器自我測試K氏平方器面積延遲時間
外文關鍵詞: squarer, self-testable, Karatsuba squarer, area, delay
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 平方計算是乘法運算中的一個特例,傳統上計算平方運算時,可使用乘法器輸入相同的二筆資料執行,以節省成本或由平方器來執行。在數位訊號處理(Digital Signal Processing,DSP)中,平方器電路構成了DSP操作的心臟,例如圖像壓縮、解碼、解調、自適應濾波,最小平均平方等。當高速處理的需求增加和應用程式的進化,實施專用的平方器與平方函數便被特別重視的提出。
    最初,平方器採用查表的方法,如果延遲時間是首要考量,則必需與面積的限制在權衡中取得平衡。該方法的主要缺點是造成面積的上升,當輸入的位元數增加時面積會成指數倍的增加。由於現今的成本與線路延遲考量,上述方法已不是最優先採用的方式。為此,大量的研究已經開發了許多不同的方法來實現平方器,改善更加重視的延遲和減少面積的限制。
    本論文研究運用K氏乘法器改良傳統平方器,加入可測試設計,以交替邏輯檢測錯誤的存在,應用於50%利用率及100%單一永駐錯誤涵蓋率,所付代價為面積增加 (n^2+454n-264)/(56n^2-96n+40)×100%,延遲時間增加 (n+2)/(4n-4)×100%,其中n為輸入位元數,以n=64為例,增加面積14.73%,延遲時間26.19% ; 所提K氏平方器演算法,在64位元平方器可節省10.65%面積(電晶體數目)。


    Squaring is a special case of multiplication. Traditionally, squaring can be performed by using multiplier itself with the same inputs for saving area or a squarer. Squaring circuit forms the heart of different DSP operations such as Image Compression, Decoding, Demodulation, Adaptive Filtering, Least Mean Squaring etc. As the applications evolved and the demand for the high speed processing increased, squaring function and dedicated squarers are implemented.
    Initially, squaring is performed by using Look Up Table (LUT) approach if delay is primary concern with the penalty of area. Major drawback of this LUT scheme is large area, which increases exponentially as the number of input bits increases. Due to the cost and the interconnect delay, this approach is not the most preferred implementation. A lot of researches have been conducted in order to develop different methodologies to implement squarer, giving more importance to improve delay and to reduce area constraints.
    This research modifies Karatsuba squarer for using an improved algorithm and alternative logic testing. The proposed testable Karstsuba squarer can be applied in the circuit under 50% utilization rate and 100% fault coverage of single stuck-at fault model with the penalties of area increased (n^2+454n-264)/(56n^2-96n+40)×100% and delay (n+2)/(4n-4)×100%. Take n=64 for instance, the area and delay increase 14.73% and 26.19%, respectively. The proposed algorithm can reduce Area of (9n+50)/(92n-14 )×100%(transistor count). For example, the area saved is 10.65% for n=64.

    摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 vi 第一章 緒論 1 1.1 背景簡介 1 1.2 研究動機及研究目的 2 1.3 論文架構 2 第二章 研究背景 5 2.1 錯誤模式(Fault Models) 5 2.2 交替邏輯(Alternating Logic) 7 2.3 延遲與面積模型(Delay/Area Model) 13 2.4 Karatsuba Multiplier 14 2.5自我對偶測試(Self-dual test) 15 2.6 傳統平方器規則性 17 第三章 所提可自我測試Karatsuba平方器設計 20 3.1 Karatsuba平方器 20 3.2 所提可自我測試Karatsuba平方器 29 第四章 分析與比較 33 4.1八位元傳統平方器(8-bit unsigned squarer) 33 4.2 Karatsuba平方器 35 4.3 所提可自我測試Karatsuba平方器 38 4.4 比較三種平方器 40 第五章 結論 49 5.1 貢獻 49 5.2 未來展望 49 參考文獻 50

    [1]Geiger, R.L., Allen, P.E., Strader, N.R. VLSI Design Techniques For Analog And Digital Circuits, McGraw-Hill, New York, 1990.
    [2]Parhami, B. Computer Arithmetic Algorithms and Hardware Designs, OXFORD, New York, 2000.
    [3]A.A. Karatsuba and Y. Ofmen, Multiplication of Many-Digital Numbers by Automatic Computers: Proceedings of the USSR Academy of Sciences. 1962, pp.293-294.
    [4]A.A. Karatsuba, The Complexity of Computations: Proceedings of the Steklov Institute of Mathematics.1995, pp.169-183.
    [5]Abramovici, M., Breuer, M.A., Friedman, A.D., Digital Systems Testing And Testable Design, IEEE PRESS, New York, 1990.
    [6] B. W. Johnson , Design and Analysis of Fault Tolerant Digital Systems, New York ,1989.
    [7]Hayes, J.P.,“ Fault modeling, ”IEEE Design and Test, Vol.2, No. 2, April 1985, pp. 88-95.
    [8]Kohavi, Z. Switching and Finite Automata Theory, McGraw-Hill, New York, 1978.
    [9]T.-Y. Chang and M.-J. Hsiao, “Carry-select adder using single ripple-carry adder"IEE ELECTRONICS LETTERS October 1998 Vol. 34 NO. 22, pp 2101-2103.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE