簡易檢索 / 詳目顯示

研究生: 蘇璽元
Shin-Yuan Su
論文名稱: 雙頻激發高頻超音波於超音波對比劑應用
Dual-High-Frequency Ultrasound Excitation in Ultrasound Contrast Agents Applications
指導教授: 葉秩光
Chih-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 76
中文關鍵詞: 超音波對比劑雙頻激發超音波對比影像高頻超音波藥物輸送
外文關鍵詞: Ultrasound contrast agents, dual-frequency excitation ultrasound, contrast-imaging, high-frequency ultrasound, drug delivery
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用非線性振盪特性偵測超音波對比劑已被廣泛使用於超音波血流成像中。根據非線性成像的報告指出,利用分辨對比劑所產生之諧波訊號,對比劑與組織可以有效的於影像中分辨出來。而高頻超音波(>10 MHz)系統雖然可以提供更高之空間解析度於微循環血流成像中。然而,受到高頻訊號的衰減以及商用對比劑共振頻率範圍的限制,無法達到足夠的訊雜比。
    在本研究中,我們提出一新式的雙頻超音波來誘發對比劑產生非線性訊號於高頻超音波系統中。此成像方式之優點在於可以達到提昇對比訊號強度以及保留影像高解析度的特性。根據本研究指出,當雙頻超音波之頻差頻率成份與對比劑共振頻率接近時,雙頻超音波訊號可以有效的誘發對比劑產生非線性振動,進而大幅提昇回波訊號的強度。而此頻差頻率成份並不受限於高頻超音波探頭頻寬,故可在高頻系統下有效率誘發小氣泡產生低頻振動。
    另外在超音波對比劑擊破的研究方面,利用對比劑包覆特定物質並將其擊破於特定區域已經被證實可以達到藥物輸送的目的。因此,我們亦提出一聲學方式來評估超音波對比劑在雙頻超音波下的擊破情形,並探討雙頻超音波之橫向解析度。根據研究結果顯示,雙頻超音波相對於傳統超音波具有較佳之擊破效果以及橫向解析度。
    本研究主要探討雙頻超音波於對比影像的應用,並觀察不同激發參數於對比劑非線性成像的影響。根據結果顯示,雙頻超音波影像具有高對比解析度以及高橫向解析度之特性,並可於特定聲學條件有效誘發對比劑的破裂。此方法在現有之超音波系統架構上即可實現,無須做大幅的更改,具有相當的實用性。本方法除了可以用在高頻超音波血流成像外,未來亦可應用在藥物輸送的研究中。


    Detection of ultrasound contrast agents (UCAs) based on their nonlinear characteristics are popular for imaging blood perfusion. Various nonlinear imaging techniques have been reported that to distinguish UCAs from tissue by exploiting their harmonic signal is efficiently in image. For microcirculation imaging, a higher frequency system (> 10 MHz) is required to obtain high spatial resolution. However, aforementioned nonlinear techniques usually suffer from insufficient signal-to-noise ratio (SNR) for intense attenuation of high-frequency nature and the limited resonance frequency range of commercialized UCAs.
    In this study, we proposed a novel approach named as dual-frequency excitation to induce nonlinear scatterings from UCAs based on high-frequency ultrasound. This proposed method provides both high lateral and contrast resolution in imaging UCAs. According to our investigations, when the difference frequency component of dual-frequency excitation is close to the resonance frequency of UCAs, the oscillation of UCAs is maximized and the echo is therefore enhanced. Note that the induced difference frequency component is beyond the frequency response of the high-frequency transducer, which excite the oscillation of UCAs more efficiency at low frequency.
    Besides, it has been demonstrated that by destroying the drug-encapsulated UCAs, the drug release within specific area, thus the drug delivery is therefore achieved. Therefore, we proposed an acoustic-based method to observe the destruction of UCAs under dual-frequency excitation and discuss the lateral resolution. Results showed the dual-frequency excitation has the better destruction ability and smaller lateral resolution than the tone-burst excitation.
    This thesis demonstrated the applications of dual-frequency excitation in contrast imaging and discussed the effects of insonation parameters on nonlinear contrast imaging. Results showed that the dual-frequency excitation ultrasound not only provides the high resolution in imaging, but also effectively induce the destruction of UCAs under specific insonation parameters. The proposed method is available for common ultrasound system, which is easy to implement on existed setup. In addition to the high-frequency perfusion imaging, the dual-frequency excitation is also potentially useful in drug delivery studies in the future.

    摘 要 i ABSTRACT iii Contents vi List of Figures viii List of Tables xi CHAPTER 1 Introduction 1 1.1. Basics of ultrasound contrast agents (UCAs) 1 1.2. Nonlinear properties of UCAs 4 1.3. Ultrasound contrast imaging 7 1.4. Dual-frequency excitation 9 1.5. Scope of the thesis 14 CHAPTER 2 Theory and simulation of dual-frequency excitation 15 2.1. Generation of dual-frequency excitation pulse 15 2.2. Acoustic radiation force 19 2.3. Imaging resolution of dual-frequency excitation 21 2.4. Nonlinear scatterings induced by dual-frequency excitation 23 2.4.1. Mathematical model 23 2.4.2. Single bubble simulation 25 2.4.3. Results and discussion 26 CHAPTER 3 In-vitro experiments and results 27 3.1. Experimental setups 27 3.2. Calibration of the transmitted transducer 31 3.3. Hydrophone received nonlinear scatterings 33 3.3.1. Results and discussion 33 3.4. Con-focal setup with M-mode imaging 35 3.4.1. Results and discussion 35 3.5. Con-focal setup with B-mode imaging 40 3.5.1. Results and discussion 40 CHAPTER 4 Destruction of UCAs with dual-frequency excitation 43 4.1. Destruction thresholds estimation 43 4.1.1. Experimental setup 43 4.1.2. Signal processing 44 4.1.3. Model for predicting the destruction thresholds 46 4.1.4. Results and discussion 47 4.2. Beam pattern estimation 52 4.2.1. Methods 52 4.2.2. Results and discussion 53 CHAPTER 5 In-vitro dual-high-frequency C-scan imaging 58 CHAPTER 6 Conclusions 63 CHAPTER 7 Future works 66 Reference 69 APPENDIX A Estimation of resonance frequency of UCAs 74

    [1] R. Gramiak and P.M. Shah, “Echocardiography of the aortic root,” Investigative Radiology, vol. 3, pp. 356-366, 1968.
    [2] N. de Jong, “Improvements of ultrasound contrast agents,” IEEE Eng. Med. Bio., vol. 15, issue 6, pp. 72-82, 1996.
    [3] L. Hoff, “Acoustic properties of ultrasonic contrast agents,” Ultrasonics, vol. 34, pp. 591-593, 1996.
    [4] A. P. Miller and N. C. Nanda, “Contrast echocardiography: new agents,” Ultrasound Med. Biol., vol. 30, no. 4, pp. 425-434, 2004.
    [5] D. L. Miller, “Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emissions,” Ultrasonics, vol. 19, pp. 217-224, 1989.
    [6] S. Y. Su, W. S. Chen and C. K. Yeh, “Effect of acoustic insonation parameters on ultrasonic contrast agents destruction,” Proc. IEEE Ultrason. Symp., pp. 1600-1603, 2006.
    [7] L. Werner, “Numerical investigation of nonlinear oscillations of gas bubbles in liquids,” J. Acoust. Soc. Am., vol. 59, no. 2, pp. 283-293, 1976.
    [8] K. Sanjay and E. B. Christopher, “Nonlinear effects in the dynamics of clouds of bubbles,” J. Acoust. Soc. Am., vol. 89, no. 2, pp. 707-714, 1991.
    [9] K. E. Morgan, J. S. Allen, P. A. Dayton, J. E. Chomas, A. L. Klibanov and K. W. Ferrara, “Experimental and theoretical evaluation of microbubble behavior effect of transmitted phase and bubble size,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 47, no. 6 pp. 1494-1509, 2000.
    [10] W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles, ” Ultrasound Med. Biol., vol. 26, no. 1, pp. 93-104, 2000.
    [11] W. T. Shi, F. Forsberg, J. S. Raichlean, L. Nnneleman and B. B. Goldberg, “Pressure dependence of subharmonic signals from contrast microbubbles,” Ultrasound Med. Biol., vol. 25, no. 2, pp. 275-283, 1999.
    [12] P.M. Shankar, P. D. Krishna and V. L. Newhouse, “Advantage of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement,” Ultrasound Med. Biol., vol. 24, no. 3, pp. 395-399, 1998.
    [13] N. de Jong, P. Frinking, F. ten Cate and Pol van der Wouw, “Characteristics of contrast agents and 2D imaging,” Proc. IEEE Ultrason. Symp., vol. 2, pp. 1449-1458, 1996.
    [14] P. H. Chang and K. K. Shung, “Second harmonic imaging and harmonic doppler measurements with Albunex,” Proc. IEEE Ultrason. Symp., vol. 3, pp. 1551-1554, 1994.
    [15] P. H. Chang, K. K. Shung, S. Wu and H. B. Levene, “Second harmonic imaging and harmonic Doppler measurements withAlbunex,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 42, issue 6, pp. 1020-1027, 1995.
    [16] Peter J. A. Frinking, A. Bouakaz, J. Kirkhorn, F. J. ten cate and N. de Jong, “Ultrasound contrast imaging: current and new potential methods,” Ultrasound Med. Biol., vol. 26, no. 6, pp. 965-975, 2000.
    [17] F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol., vol. 28, no. 1, pp. 1-18, 2002.
    [18] P. N. Burns, D. H. Simpson and M. A. Averkiou, “Nonlinear imaging,” Ultrasound Med. Biol., vol. 26, pp. s19-s22, 2000.
    [19] F. Forsberg, W. T. Shi and B. B. Goldberg, “Subharmonic imaging of contrast agents,” Ultrasonics, vol. 38, pp. 93-98, 2000.
    [20] M. Bruce, M. Averkiou, K. Tiemann, S. Lohmaier, J. Powers and K. Beach, “Vascular flow and perfusion imaging with ultrasound contrast agents,” Ultrasound Med. Biol., vol. 30, no. 6, pp. 735-743, 2004.
    [21] Y. Sun, D. E. Kruse, P. A. Dayton, and K. W. Ferrara, “High-frequency dynamics of ultrasound contrast agents,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 52, no. 11, pp. 1981-1991, 2005.
    [22] Y. Sun, S. Zhao, P. A. Dayton, and K. W. Ferrara, “Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 53, no. 6, pp. 1130-1137, 2006.
    [23] A. D. Phelps, D. G. Ramble and T. G. Leighton, “The use of a combination frequency technique to measure the surf zone bubble population,” J. Acoust. Soc. Am., vol. 101, no. 4, pp. 1981-1989, 1997.
    [24] A. D. Phelps and T. G. Leighton, “High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique,” J. Acoust. Soc. Am., vol. 99, no. 4, pp. 1985-1992, 1996.
    [25] H. H. Shariff, P. D. Bevan, R. Karshafian, R. Williams and P. N. Burns, “Radial modulation imaging: raising the frequency for contrast imaging,” Proc. IEEE Ultrason. Symp., pp. 104-107, 2006.
    [26] E. Cherin, J. Brown, H. Shariff, R. Karshafian, R. Williams, P. N. Burns and F. S. Foster, “Radial modulation imaging of microbubbles at high-frequency,” Proc. IEEE Ultrason. Symp., pp. 888-891, 2007.
    [27] S. Chen, R. Kinnick, J. F. Greenleaf and M. Fatemi, “Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation,” Ultrasonics, vol. 44, pp. e123-e126, 2006.
    [28] M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science, vol. 280, no. 5360, pp. 82-85, 1998.
    [29] S. Chen, R. R. Kinnick, J. F. Greenleaf and M. Fatemi, “Harmonic vibro-acoustography,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 54, no. 7, pp. 1346-1351, 2007.
    [30] S. Chen, M. Fatemi, R. Kinnick and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 51, no. 3, pp. 313-321, 2004.
    [31] M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, ” Proc. Natl. Acad. Sci. USA., vol. 96, issue 12, pp. 6603-6608, 1999.
    [32] R. J. Eckersley, C. T. Chin and P. N. Burns, “Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power,” Ultrasound Med. Biol., vol. 31, no. 2, pp. 213-219, 2005.
    [33] B. Haider and R. Y. Chiao, “Higher order nonlinear ultrasonic imaging,” Proc. IEEE Ultrason. Symp., vol. 2, pp. 1527-1531, 1999.
    [34] S.M. van der Meer, M. Versluis, D. Lohse, C.T. Chin, A. Bouakaz, N. de Jong, “The resonance frequency of SonoVue as observed by high-speed optical imaging,” Proc. IEEE Ultrason. Symp., vol. 1, pp. 343-345, 2004.
    [35] J. M. Gorce, M. ARrditi and M. Schneider, “Influence of bubble size distribution on the echogenicity of ultrasound contrast agents,” Investigative Radiology, vol. 35, no. 11, pp. 661-671, 2000.
    [36] P. Marmottant, S. van der Meer, M. Emmer, M. Versluis, N. de Jong, S. Hilgenfeldtb and D. Lohse, “A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture,” J. Acoust. Soc. Am., vol. 118, no. 6, pp. 3499-3505, 2005.
    [37] R. F. Wagner, M. F. Insana and S. W. Smith, “Fundamental correlation lengths of coherent speckle in medical ultrasonic images,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 35, no. 1, pp. 34-44, 1988.
    [38] R. F. Wagner, S. W. Smith, J. M. Sandrik and H. Lopez, “Statistics of speckle in ultrasound B-scans,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 30, no. 3, pp. 156-163, 1983.
    [39] C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. su-25, no. 1, pp. 1-6, 1978.
    [40] F. S. Foster, C. J. Palvin, K. A. Harasiewicz, D. A. Christopher and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med. Biol., vol. 26, no. 1, pp. 1-27, 2000.
    [41] D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubble contrast agents,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 46, no. 2 pp. 372-382, 1999.
    [42] C. C. Shen and P. C. Li, “Pulse-inversion-based fundamental imaging for contrast detection,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 50, no. 9, pp. 1124-1133, 2003.
    [43] E. Quaia, F. Calliada, M. Bertolotto, S. Rossi, L. Garioni, L. Garioni, L. Rosa and R. Pozzi-mucelli, “Characterization of focal liver lesions with contrast-specific US modes and a sulfur hexafluoride-filled microbubble contrast agents: diagnostic performance and confidence,” Radiology, vol. 232, no. 2, pp. 420-430, 2004.
    [44] S. Zhao, D. E. Kruse, K. W. Ferrara, and P. A. Dayton, “Acoustic response from adherent targeted contrast agents,” Jasa Electronic Letters, vol. 120, no. 6, pp. EL63-EL69, 2006.
    [45] P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. Brandenburger, K. R. Nightingale and K. W. Ferrara, “A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents,” J. Acoust. Soc. Am., vol. 44, no. 6, pp. 1264-1277, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE