簡易檢索 / 詳目顯示

研究生: 施皓安
Shih, Hao-An
論文名稱: 針對加權最大割問題的遞迴量子近似最佳化演算法變體
Variants of Recursive Quantum Approximate Optimization Algorithm for weighted Maximum Cut problem
指導教授: 林瀚仚
Lin, Han-Hsuan
口試委員: 韓永楷
Hon, Wing-Kai
賴青沂
Lai, Ching-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 22
中文關鍵詞: 遞迴量子近似最佳化演算法加權最大割問題量子近似最佳化演算法
外文關鍵詞: Recursive QAOA, weighted Maximum Cut problem, QAOA
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遞迴量子近似最佳化演算法(RQAOA)是一種非局部的量子近似最佳化演算法(QAOA)的變體,具有與經典演算法競爭的潛力。基於前景看好的RQAOA,我們開發了兩種RQAOA的變體,希望能獲得更好的性能或防止RQAOA陷入一些不夠好的解答。第一種變體是受到RQAOA$_1$啟發的經典演算法(RICA),其針對QAOA$_1$的原始公式中的不想要的部分進行了修改。我們將RICA與原始的RQAOA$_1$在隨機的實例及對於RQAOA$_1$較難的實例上進行了比較,結果顯示平均近似比有所改善。第二種變體是隨機化RQAOA(RRQAOA),其在RQAOA選擇頂點對的策略中增加了更多隨機性。我們展現了RRQAOA可以防止陷入一些不夠好的解答,並展示了其在無權重的60節點圖和有權重的80節點圖上與最先進的Goemans-Williamson演算法競爭的能力。


    Recursive quantum approximate optimization algorithm (RQAOA) is a non-local variant of quantum approximate optimization algorithm (QAOA) that has the potential to compete with classical algorithm. Based on the promising RQAOA, we developed two variants of RQAOA in hope of getting even better performance or prevent RQAOA from being stuck on some not good enough solutions. The first variant is the RQAOA$_1$ inspired classical algorithm (RICA) which tailored the unwanted part of the original formula of QAOA$_1$. We compared RICA with the original RQAOA$_1$ on random instances and hard instances of RQAOA$_1$ and showed an improvement on average approximation ratio. The second variant is the randomized RQAOA (RRQAOA) which adds more randomness into the strategy of selecting vertices pair of RQAOA. We showed that RRQAOA can prevent getting stuck and showed it's ability to compete with the state-of-the-art Goemans-Williamson algorithm on unweighted 60 nodes graphs and weighted 80 nodes graphs.

    Abstract (Chinese) I Abstract II Contents III List of Figures IV 1 Introduction 1 2 Background 4 2.1 weighted Maximum Cut (Max-Cut) problem . . . . . . . . . . . . . 4 2.2 Quantum Approximate Optimization Algorithm (QAOA) . . . . . . 5 2.3 Recursive QAOA (RQAOA) . . . . . . . . . . . . . . . . . . . . . . 7 3 Variants of RQAOA 9 3.1 RQAOA1 inspired classical algorithm (RICA) . . . . . . . . . . . . 9 3.2 Randomized RQAOA (RRQAOA) . . . . . . . . . . . . . . . . . . . 13 4 Conclusion 18 Bibliography 19

    [1] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
    2:79, 2018.
    [2] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sum-
    ner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen,
    Jakob S Kottmann, Tim Menke, et al. Noisy intermediate-scale quantum
    algorithms. Reviews of Modern Physics, 94(1):015004, 2022.
    [3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approxi-
    mate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.
    [4] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Sug-
    uru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan,
    Lukasz Cincio, et al. Variational quantum algorithms. Nature Reviews
    Physics, 3(9):625–644, 2021.
    [5] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial opti-
    mization, volume 1. Springer, 2011.
    [6] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obsta-
    cles to variational quantum optimization from symmetry protection. Physical
    review letters, 125(26):260505, 2020.
    19
    [7] Vishwanathan Akshay, Hariphan Philathong, Mauro ES Morales, and Ja-
    cob D Biamonte. Reachability deficits in quantum approximate optimization.
    Physical review letters, 124(9):090504, 2020.
    [8] Giacomo De Palma, Milad Marvian, Cambyse Rouz ́e, and Daniel Stilck
    Fran ̧ca. Limitations of variational quantum algorithms: a quantum optimal
    transport approach. PRX Quantum, 4(1):010309, 2023.
    [9] Boaz Barak and Kunal Marwaha. Classical algorithms and quantum limita-
    tions for maximum cut on high-girth graphs. arXiv preprint arXiv:2106.05900,
    2021.
    [10] Edward Farhi, David Gamarnik, and Sam Gutmann. The quantum approx-
    imate optimization algorithm needs to see the whole graph: A typical case.
    arXiv preprint arXiv:2004.09002, 2020.
    [11] Chi-Ning Chou, Peter J Love, Juspreet Singh Sandhu, and Jonathan Shi.
    Limitations of local quantum algorithms on random max-k-xor and beyond.
    arXiv preprint arXiv:2108.06049, 2021.
    [12] Joao Basso, David Gamarnik, Song Mei, and Leo Zhou. Performance and
    limitations of the qaoa at constant levels on large sparse hypergraphs and
    spin glass models. In 2022 IEEE 63rd Annual Symposium on Foundations of
    Computer Science (FOCS), pages 335–343. IEEE, 2022.
    [13] Rebekah Herrman, Phillip C Lotshaw, James Ostrowski, Travis S Humble,
    and George Siopsis. Multi-angle quantum approximate optimization algo-
    rithm. Scientific Reports, 12(1):6781, 2022.
    [14] Linghua Zhu, Ho Lun Tang, George S Barron, FA Calderon-Vargas, Nicholas J
    Mayhall, Edwin Barnes, and Sophia E Economou. Adaptive quantum ap-
    20
    proximate optimization algorithm for solving combinatorial problems on a
    quantum computer. Physical Review Research, 4(3):033029, 2022.
    [15] Yunlong Yu, Chenfeng Cao, Carter Dewey, Xiang-Bin Wang, Nic Shannon,
    and Robert Joynt. Quantum approximate optimization algorithm with adap-
    tive bias fields. Physical Review Research, 4(2):023249, 2022.
    [16] Pranav Chandarana, Narendra N Hegade, Koushik Paul, Francisco Albarr ́an-
    Arriagada, Enrique Solano, Adolfo Del Campo, and Xi Chen. Digitized-
    counterdiabatic quantum approximate optimization algorithm. Physical Re-
    view Research, 4(1):013141, 2022.
    [17] V Vijendran, Aritra Das, Dax Enshan Koh, Syed M Assad, and Ping Koy
    Lam. An expressive ansatz for low-depth quantum approximate optimisation.
    Quantum Science and Technology, 9(2):025010, 2024.
    [18] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Hy-
    brid quantum-classical algorithms for approximate graph coloring. Quantum,
    6:678, 2022.
    [19] Eunok Bae and Soojoon Lee. Recursive qaoa outperforms the original qaoa for
    the max-cut problem on complete graphs. Quantum Information Processing,
    23(3):78, 2024.
    [20] Yash J Patel, Sofiene Jerbi, Thomas B ̈ack, and Vedran Dunjko. Reinforcement
    learning assisted recursive qaoa. EPJ Quantum Technology, 11(1):6, 2024.
    [21] Daniel J Egger, Jakub Mareˇcek, and Stefan Woerner. Warm-starting quantum
    optimization. Quantum, 5:479, 2021.
    21
    [22] Asier Ozaeta, Wim van Dam, and Peter L McMahon. Expectation values
    from the single-layer quantum approximate optimization algorithm on ising
    problems. Quantum Science and Technology, 7(4):045036, 2022.
    [23] Michel X Goemans and David P Williamson. Improved approximation algo-
    rithms for maximum cut and satisfiability problems using semidefinite pro-
    gramming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.
    [24] Subhash Khot. On the power of unique 2-prover 1-round games. In Pro-
    ceedings of the thiry-fourth annual ACM symposium on Theory of computing,
    pages 767–775, 2002.
    [25] Johan H ̊astad. Some optimal inapproximability results. Journal of the ACM
    (JACM), 48(4):798–859, 2001.
    [26] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quan-
    tum computation by adiabatic evolution. arXiv preprint quant-ph/0001106,
    2000.
    [27] P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-
    297):18, 1959.
    [28] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Statistical Physics:
    Volume 5, volume 5. Elsevier, 2013.
    [29] Nicolo Gusmeroli, Timotej Hrga, Borut Luˇzar, Janez Povh, Melanie Sieben-
    hofer, and Angelika Wiegele. Biqbin: a parallel branch-and-bound solver for
    binary quadratic problems with linear constraints. ACM Transactions on
    Mathematical Software (TOMS), 48(2):1–31, 2022.

    QR CODE