研究生: |
陳奕誠 |
---|---|
論文名稱: |
外差混沌訊號於抑制時間延遲特徵及多通道雷達之研究 |
指導教授: | 林凡異 |
口試委員: |
馮開明
朱大舜 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 時間延遲特徵 、多通道雷達 |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在利用外差混頻的技術,抑制半導體雷射在光回饋機制下產生的混沌態之時間延遲特徵,以及透過在頻寬利用率上的優勢,將此技術應用在多通道雷達的開發。藉由微波混頻器,將混沌訊號與外加的單頻波訊號進行混頻,混頻之後的混沌訊號其時間延遲特徵將隨著不同的混頻頻率而有不同的抑制效果。本研究提出兩種混頻的方式,操作在適當的混頻頻率,能有效的抑制時間延遲特徵,最佳的抑制效果可以消除70.85%的整體時間延遲特徵。在多通道雷達開發的部分,我們首先研究外差混頻的技術對於混沌訊號頻寬利用率的影響,藉由改變混頻頻率,觀察不同混頻頻率的外差混沌訊號兩者之間的相關程度,實驗結果顯示,當混頻頻率相差0.2MHz,輸出的外差混沌訊號彼此相關性極低,因此,在混沌頻譜上,只要相隔0.2MHz的頻率就能透過外差混頻的方式,同時輸出不同頻譜範圍的混沌訊號,有效的增加了頻寬的利用率。我們透過此技術在頻寬利用率上的優勢,發展出一套多通道雷達系統,當此系統操作在適當的混頻頻率,就能透過單一的雷射光源同時產生多個彼此正交的雷達訊號源。
[1] F. Y. Lin and J. M. Liu, ”Chaotic radar using nonlinear laser dynamics”, IEEE J. Quantum Electron. 40, 815–820 (2004).
[2] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, ”Chaos-based communications
at high bit rates using commercial fibre-optic links”, Nature 438, 343–346 (2005).
[3] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, ”Fast physical random bit generation with chaotic semiconductor lasers”, Nat. Photonics 2, 728–732 (2008).
[4] A. Murakami, J. Ohtsubo, and Y. Liu, ”Stability analysis of semiconductor laser with phase-conjugate feedback”, IEEE J. Quantum Electron. 33, 1825–1831 (1997).
[5] J. Mork, B. Tromborg, and J. Mark, ”Chaos in semiconductor lasers with optical feedback: theory and experiment”, IEEE J. Quantum Electron. 28, 93–108 (1992).
[6] D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, ”Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback”, Opt. Lett. 32, 2960–2962 (2007).
[7] D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, ”Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical
point of view”, IEEE J. Quantum Electron. 45, 879–891 (2009).
[8] J. G. Wu, G. Q. Xia, X. Tang, X. D. Lin, T. Deng, L. Fan, and Z. M. Wu, ”Time delay signature concealment of optical feedback induced chaos in an external cavity
semiconductor laser”, Opt. Express 18, 6661–6666 (2010).
[9] J. G. Wu, G. Q. Xia, and Z. M. Wu, ”Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback”, Opt. Express 17, 20124–20133 (2009).
[10] S. S. Li, Q. Liu, and S. C. Chan, ”Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser”, IEEE Photonics J. 4,
1930–1935 (2012).
[11] J. G. Wu, G. Q. Xia, L. P. Cao, and Z. M. Wu, ”Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser”, Opt. Commun. 282, 3153–3156 (2009).
[12] X. Zhuge and A. G. Yarovoy, ”A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection”, IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[13] D. Tarchi, F. Oliveri and P. F. Sammartino, ”MIMO Radar and Ground-Based SAR Imaging Systems: Equivalent Approaches for Remote Sensing”, IEEE Trans. Geosci.
Remote Sens. 51, 425–435 (2013).
[14] M. S. Mercan and E. Ozturk, ”Through wall imaging based on MIMO UWB radar with a fast image reconstruction method”, Radar Conference (EuRAD), 2013 European. 29–32.
[15] X. Z. Li and S. C. Chan, ”Heterodyne random bit generation using an optically injected semiconductor laser in chaos”, IEEE J. Quantum Electron. 49, 829–838 (2013).
[16] R. Lang and K. Kobayashi, ”External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron. 16, 347–355 (1980).
[17] J. M. Liu and T. B. Simpson, ”Four-wave mixing and optical modulation in a semiconductor laser”, IEEE J. Quantum Electron. 30, 957–965 (1994).