研究生: |
邱柏誠 Chiu, Bo-Cheng |
---|---|
論文名稱: |
銅銦(鎵)硫的奈米結構合成與鑑定 Synthesis and Characterization of CuES2(E=In/Ga) Nanostructures |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: |
黃暄益
曾院介 段興宇 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 銅銦硫 、銅鎵硫 、銅銦鎵硫 、奈米 、合成 、鑑定 |
相關次數: | 點閱:101 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this work, we have studied synthesis and characterization of CuInS2 and CuGaS2 nanomaterial. First, we have synthesized CuInS2 with unique nanostructures which is composed by nanosheet-like CuInS2 by solvothermal method. Copper iodide (CuI), Indium acetylacetonate (In(acac)2) and thiourea were used as reagents. All of them can be dissolved in butylamine as surfactant and toluene as solvent. When Solvothermal method was adapted, The microspheres consisted of nanosheet-like CuInS2 with about 1nm thick were obtained. The further characterization of nanosheet-like CuInS2 products is studied in detail. As-synthesized CuInS2 products show light absorption across the entire visible light region and the optical band gap is 1.6ev larger than bulk material (1.45eV). Second, We have synthesized chalcopyrite-type CuGaS2 nanoparticles with sulfur as sulfur precursors which was reacted with metal chlorides in oleylamine and developed a simple method to control the size of nanoparticle due to size-selective precipitation. Furthermore, appropriate choice of capping agents allows precise control and stabilization of the small size nanoparticles. The size dependent optical properties of chalcopyrite-type nanoparticles are also introduced. In addition, Monodisperse wurtzite-type CuGaS2 nanocrystals and nanowires have been synthesized by heating metal chlorides and thiourea in oleylamine. As we known, the reaction temperature and concentration of reactant play the role in forming wurtzite-type CuGaS2 nanowires. The NCs have been characterized by X-ray powder diffraction patterns, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analysis. The formation mechanism of as-prepared wurtzite type nanoparticle and nanowires are both studied in our report.
本論文研究主要合成CuInS2和CuGaS2的三元型半導體奈米粒子。以材料區分,可分為兩大部分。第一部分,我們以Copper iodide (CuI), Indium acetylacetonate (In(acac)2)和thiourea為反應物,加入butylamine和toluene,當界面活性劑與溶劑,利用溶劑熱法合成CuInS2的奈米材料。合成出的CuInS2奈米材料是由薄片狀奈米結構組織而成,經過分析可觀察薄片厚度約1nm左右,之後在做更仔細的奈米結構分析於內文中。此材料的吸收光譜可顯示CuInS2材料的標準特性,可吸收大部分的可見光,而光學能階經計算為1.6eV,與塊材的1.45eV有藍移的現象。第二部分,我們利用不同的硫前驅物,sulfur和thiourea,可合成出黃銅礦和纖鋅礦結構的CuGaS2奈米粒子。這些奈米粒子可均勻分散於有機溶劑中。透過晶格模擬與實驗證明CuGaS2纖鋅礦結構與纖鋅礦奈米粒子的生長機制;另外,在高濃度反應條件下,經由不同溫度與濃度參數探討奈米線生長機制;最後本論文提出控制合成黃銅礦和纖鋅礦CuGaS2奈米粒子和奈米線的方式。這兩部分將有助於在溶液相以簡單且低成本方式合成與控制三元半導體奈米材料的結構與形狀。
(1) Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Nature 2004, 429, 642.
(2) Chan, Y.; Steckel, J. S.; Snee, P. T.; Caruge, J. M.; Hodgkiss, J. M.; Nocera, D. G.; Bawendi, M. G. Appl Phys Lett 2005, 86.
(3) Coe-Sullivan, S.; Woo, W. K.; Steckel, J. S.; Bawendi, M.; Bulovic, V. Org Electron 2003, 4, 123.
(4) Kobayashi, S.; Tani, Y.; Kawazoe, H. Jpn J Appl Phys 2 2007, 46, L392.
(5) Mattoussi, H.; Radzilowski, L. H.; Dabbousi, B. O.; Thomas, E. L.; Bawendi, M. G.; Rubner, M. F. Journal of Applied Physics 1998, 83, 7965.
(6) Rizzo, A.; Li, Y. Q.; Kudera, S.; Della Sala, F.; Zanella, M.; Parak, W. J.; Cingolani, R.; Manna, L.; Gigli, G. Appl Phys Lett 2007, 90.
(7) Barnham, K. W. J.; Duggan, G. Journal of Applied Physics 1990, 67, 3490.
(8) Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.; Yang, Y. M. Appl Phys Lett 2007, 90.
(9) Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl Phys Lett 2007, 91.
(10) Chang, C. H.; Lee, Y. L. Appl Phys Lett 2007, 91.
(11) Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. Journal of Applied Physics 2008, 103.
(12) Loferski, J. J. Journal of Applied Physics 1956, 27, 777.
(13) Wagner, S.; Bridenbaugh, P. M. J Cryst Growth 1977, 39, 151.
(14) Kazmerski, L. L. Inst. Phys. Conf. Ser. 1977, 35, 217.
(15) Romeo, N. Jpn J Appl Phys 2 1980, 19 5.
(16) Yoshino, K.; Ikari, T.; Shirakata, S.; Miyake, H.; Hiramatsu, K. Appl Phys Lett 2001, 78, 742.
(17) Cattarin, S.; Pagura, C.; Armelao, L.; Bertoncello, R.; Dietz, N. Journal of The Electrochemical Society 1995, 142, 2818.
(18) Tsuji, I.; Kato, H.; Kudo, A. Angewandte Chemie International Edition 2005, 44, 3565.
(19) Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S. Journal of Applied Physics 2009, 105, 073106.
(20) Schock, H. W.; Meissner, D. In Solarzellen—Physikalische Grundlagen und Anwendungen in der Photovoltaik.; Vieweg & Sohn: Wiesbaden, 1993, p 44.
(21) Guezmir, N.; Ouerfelli, J.; Belgacem, S. Mater Chem Phys 2006, 96, 116.
(22) Czekelius, C.; Hilgendorff, M.; Spanhel, L.; Bedja, I.; Lerch, M.; Muller, G.; Bloeck, U.; Su, D. S.; Giersig, M. Adv Mater 1999, 11, 643.
(23) Arici, E.; Sariciftci, N. S.; Meissner, D. Adv Funct Mater 2003, 13, 165.
(24) Wettling, W. Phys. Blatter 1997, 53, 1197.
(25) Hanna, G.; Jasenek, A.; Rau, U.; Schock, H. W. Thin Solid Films 2001, 387, 71.
(26) Zheng, L.; Xu, Y.; Song, Y.; Wu, C. Z.; Zhang, M.; Xie, Y. Inorg Chem 2009, 48, 4003.
(27) Tabata, M.; Maeda, K.; Ishihara, T.; Minegishi, T.; Takata, T.; Domen, K. J Phys Chem C 2010, 114, 11215.
(28) Habas, S. E.; Platt, H. A. S.; van Hest, M. F. A. M.; Ginley, D. S. Chem Rev 2010, 110, 6571.
(29) Musselman, K. P.; Wisnet, A.; Iza, D. C.; Hesse, H. C.; Scheu, C.; MacManus-Driscoll, J. L.; Schmidt-Mende, L. Adv Mater 2010, 22, E254.
(30) Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem Rev 2010, 110, 389.
(31) Linkous, C. A.; Mingo, T. E.; Muradov, N. Z. Int J Hydrogen Energ 1994, 19, 203.
(32) Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295.
(33) Torimoto, T.; Adachi, T.; Okazaki, K.; Sakuraoka, M.; Shibayama, T.; Ohtani, B.; Kudo, A.; Kuwabata, S. J Am Chem Soc 2007, 129, 12388.
(34) Jiang, Y.; Wu, Y.; Mo, X.; Yu, W. C.; Xie, Y.; Qian, Y. T. Inorg Chem 2000, 39, 2964.
(35) Lu, Q. Y.; Hu, J. Q.; Tang, K. B.; Qian, Y. T.; Zhou, G. E.; Liu, X. M. Inorg Chem 2000, 39, 1606.
(36) Ahn, S.; Kim, K.; Chun, Y.; Yoon, K. Thin Solid Films 2007, 515, 4036.
(37) Xiao, J. P.; Xie, Y.; Xiong, Y. J.; Tang, R.; Qian, Y. T. J Mater Chem 2001, 11, 1417.
(38) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. Chemistry of Materials 2003, 15, 3142.
(39) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. J Phys Chem B 2004, 108, 12429.
(40) Nairn, J. J.; Shapiro, P. J.; Twamley, B.; Pounds, T.; von Wandruszka, R.; Fletcher, T. R.; Williams, M.; Wang, C. M.; Norton, M. G. Nano Lett 2006, 6, 1218.
(41) Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. J Am Chem Soc 2008, 130, 16770.
(42) Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. J Am Chem Soc 2008, 130, 5620.
(43) Malik, M. A.; O'Brien, P.; Revaprasadu, N. Adv Mater 1999, 11, 1441.
(44) Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Chemistry of Materials 2008, 20, 6434.
(45) Prabukanthan, P.; Dhanasekaran, R. Cryst Growth Des 2007, 7, 618.
(46) Du, W. M.; Qian, X. F.; Yin, J.; Gong, Q. Chem-Eur J 2007, 13, 8840.
(47) Xie, R. G.; Rutherford, M.; Peng, X. G. J Am Chem Soc 2009, 131, 5691.
(48) Connor, S. T.; Hsu, C. M.; Weil, B. D.; Aloni, S.; Cui, Y. J Am Chem Soc 2009, 131, 4962.
(49) Koo, B.; Patel, R. N.; Korgel, B. A. Chemistry of Materials 2009, 21, 1962.
(50) Qi, Y.; Liu, Q.; Tang, K.; Liang, Z.; Ren, Z.; Liu, X. The Journal of Physical Chemistry C 2009, 113, 3939.
(51) Nose, K.; Soma, Y.; Omata, T.; Otsuka-Yao-Matsuo, S. Chemistry of Materials 2009, 21, 2607.
(52) Batabyal, S. K.; Tian, L.; Venkatram, N.; Ji, W.; Vittal, J. J. J Phys Chem C 2009, 113, 15037.
(53) Kruszynska, M.; Borchert, H.; Parisi, J.; Kolny-Olesiak, J. J Am Chem Soc 2010, 132, 15976.
(54) Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Nano Lett 2008, 8, 2982.
(55) Norako, M. E.; Brutchey, R. L. Chemistry of Materials 2010, 22, 1613.
(56) Wang, J. J.; Wang, Y. Q.; Cao, F. F.; Guo, Y. G.; Wan, L. J. J Am Chem Soc 2010, 132, 12218.
(57) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J Am Chem Soc 1993, 115, 8706.
(58) Chiang, M.-Y.; Chang, S.-H.; Chen, C.-Y.; Yuan, F.-W.; Tuan, H.-Y. The Journal of Physical Chemistry C 2011, 115, 1592.
(59) Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A. J Am Chem Soc 2003, 125, 16050.
(60) Lim, W. P.; Wong, C. T.; Ang, S. L.; Low, H. Y.; Chin, W. S. Chemistry of Materials 2006, 18, 6170.
(61) Ogawa, T.; Kuzuya, T.; Hamanaka, Y.; Sumiyama, K. J Mater Chem 2010, 20, 2226.
(62) Li, T.-L.; Teng, H. J Mater Chem 2010, 20, 3656.
(63) Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D. Acs Nano 2010, 4, 5253.
(64) Steckel, J. S.; Zimmer, J. P.; Coe-Sullivan, S.; Stott, N. E.; Bulović, V.; Bawendi, M. G. Angewandte Chemie International Edition 2004, 43, 2154.
(65) Huxter, V. M.; Mirkovic, T.; Nair, P. S.; Scholes, G. D. Adv Mater 2008, 20, 2439.
(66) Mao, J. F.; Shu, Q.; Wen, Y. Q.; Yuan, H. Y.; Xiao, D.; Choi, M. M. F. Cryst Growth Des 2009, 9, 2546.
(67) Peng, X. G. Adv Mater 2003, 15, 459.
(68) Pacholski, C.; Kornowski, A.; Weller, H. Angew Chem Int Edit 2002, 41, 1188.
(69) Peng, Z. M.; You, H. J.; Yang, H. Acs Nano 2010, 4, 1501.
(70) Zhang, J.; Huang, F.; Lin, Z. Nanoscale 2010, 2, 2873.
(71) Chen, Y. F.; Johnson, E.; Peng, X. G. J Am Chem Soc 2007, 129, 10937.