簡易檢索 / 詳目顯示

研究生: 郭柏強
Kuo, Po-Chiang
論文名稱: 反應式電子束蒸鍍成長之高動能電感超導氮化鈦薄膜
High Kinetic Inductance Superconducting Titanium Nitride Thin Film Grown by Reactive E-beam Evaporation
指導教授: 林晏詳
LIN, YEN-HSIANG
口試委員: 蕭子綱
HSIAO, TZU-KAN
葉勝玄
Yeh, Sheng-Shiuan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系應用物理組
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 40
中文關鍵詞: 氮化鈦動能電感反應式電子束蒸鍍超導薄膜片電阻fluxonium 量子位元量子元件
外文關鍵詞: Titanium nitride, kinetic inductance, reactive electron-beam evaporation, superconducting thin films, sheet resistance, fluxonium qubits, quantum devices
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用反應式電子束蒸鍍(Reactive Electron Beam Evaporation, REBE)
    技術,嘗試重現馬里蘭大學實驗室團隊發表之氮化鈦(TiN)薄膜製程 [1]。透
    過精確調控電子束電流、氮氣(N₂)流量,並將鍍膜腔體壓力控制於5.0×10⁻⁵至
    5.5×10⁻⁵ Torr之間,成功在高真空環境下製備出具強無序性及高動能電感(Kinetic
    Inductance)的TiN超導薄膜。實驗中穩定重現地獲得常態片電阻約為40~46Ω/□,
    對應之動能電感高達16~18pH/□。
    利用 JEOL JSM-7000F 場發射掃描式電子顯微鏡(SEM)之能量散射 X 光
    光譜儀(EDS)分析薄膜的元素組成比例,顯示部分樣品之氮鈦比例穩定且接
    近理想之 1:1,證實 REBE 法具有優異的化學反應效率以及低氧摻雜特性。進一
    步透過四點探針低溫量測(最低溫達 1.6 K)取得薄膜之臨界溫度(TC),結果
    顯示各樣品之TC皆落在 3.2~3.89 K 範圍內,相較於原馬里蘭實驗室之 0.77 K 顯
    著提升。
    相較於原子層沉積(ALD)法 [2],本研究之 REBE 製程明顯提升薄膜的
    無序性並有效提升動能電感,片電感值最高可超越傳統 ALD 法所製 TiN 薄膜
    約十倍;且相較於馬里蘭實驗室文獻,本製程能穩定製備更高TC之 TiN 薄膜。
    這些特性使 REBE 技術更適用於製作高阻抗共振腔、fluxonium 量子位元及微波
    量子元件。本研究成果未來可透過調整幾何圖案設計及製程參數,進一步提升
    薄膜元件的品質因子(Q)及量子相干時間(T₂),拓展其在量子資訊科技領域
    之應用潛力。


    In this study, we employed reactive electron-beam evaporation (REBE) to
    reproduce and further develop a fabrication method previously reported by the
    University of Maryland group [1] (Mencia ,Yen-Hsiang Lin ,Vladimir Manucharyan,
    et al., J. Appl. Phys. 130, 225109, 2021)for highly disordered superconducting titanium
    nitride (TiN) thin films. By precisely controlling the electron-beam current, nitrogen
    (N₂) gas flow, and deposition chamber pressure (maintained between 5.0×10⁻⁵ and
    5.5×10⁻⁵ Torr), we reproducibly obtained TiN films exhibiting a normal-state sheet
    resistance of approximately 40–46 Ω/□ and high kinetic inductance ranging from 16
    to 18 pH/□.
    Elemental analyses performed using energy-dispersive X-ray spectroscopy (EDS)
    integrated with a JEOL JSM-7000F field-emission scanning electron microscope (SEM)
    revealed a stable and nearly stoichiometric N/Ti ratio (~1:1), indicating excellent
    nitridation efficiency and minimal oxygen incorporation. Four-point probe
    measurements at cryogenic temperatures down to 1.6 K showed superconducting
    critical temperatures (TC) consistently ranging between 3.2 K and 3.89 K, significantly
    higher than the previously reported value of 0.77 K.
    Compared to atomic layer deposition (ALD) [2], the REBE technique substantially
    enhanced film disorder and kinetic inductance, achieving values up to tenfold higher
    than conventional ALD grown TiN. Furthermore, our method produced higher TC
    films compared to the original Maryland study, making REBE-grown TiN particularly
    suitable for applications in high-impedance resonators, fluxonium qubits, and
    microwave quantum circuits. Future optimization of geometric designs and deposition
    parameters is expected to further improve device quality factors (Q) and quantum
    iii
    coherence times (T₂), expanding their potential for quantum information technology.

    QR CODE