研究生: |
周順平 Chou, Shun-Ping |
---|---|
論文名稱: |
掃描穿隧顯微鏡研究氧化錳在銀 (001) 上的成長 Investigation of Mn-Oxide Growth on Ag(001) Using Scanning Tunneling Microscopy |
指導教授: |
徐斌睿
Pin-Jui Hsu |
口試委員: |
蘇蓉容
Su, Jung-Jung 王柏堯 Wang, Bo-Yao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系物理組 |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 掃描穿隧顯微鏡 、氧化錳/銀(001) 、磁交互作用 、自旋極化掃描穿隧顯微鏡 、掃描穿隧能譜 |
外文關鍵詞: | Scanning Tunneling Microscope, MnO/Ag(001), magnetic interaction, Spin-polarized Scanning Tunneling microscope, scanning tnneling spectroscopy |
相關次數: | 點閱:9 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
絕大多數的過渡金屬氧化物塊材屬於反鐵磁絕緣體[1][2][3],超交換耦合可以很
好的解釋這些塊材的反鐵磁性。然而,對於二維過渡金屬氧化物的磁性,有關掃描穿隧顯微鏡(STM)的研究,多數沒有對其磁性進行相關探討。因此,本碩論的目標是希望能夠長出品質佳的氧化錳薄膜,並利用自旋極化掃描穿隧顯微鏡(SP-STM)研究樣品的磁性。不過在內文中,主要著重在樣品成長討論,利用STM研究樣品表面,前半段先簡單了解Ag(001)與Mn/Ag(001)系統的成長以及一些物理特性,後半部分再討論Mn-Oxide/Ag(001) 系統,成長型態隨各種製成參數的變化。
對於Mn/Ag(001) 系統,實驗發現Mn無法在基板上形成單原子層,易與下方Ag原
子發生反應,形成合金,且Mn在較高鍍量或是較高溫度下成長,會越發不穩定;至於Mn-Oxide/Ag(001) 系統,實驗發現此系統於製成參數非常敏感,並形成不只一種氧化物型態,文中也探討其如何隨著氧氣分壓、錳鍍量以及加熱功率做改變。結果指出,隨著氧氣分壓增加,有助於表面形成面積更大片的MnO(2×1)條紋結構,而固定其他參數,改變錳鍍量,顯示若錳鍍量高過一個程度,並不助於表面形成MnO(2×1)條紋結構,而是依序形成無序結構、(4×2)與c(4×4)、(12×12)扭曲結構;而從改變加熱功率的實驗推斷,若是氧化時溫度太高,會造成MnO(2×1)的覆蓋率大幅減少,因此得要在一個適當的氧化溫度下,才有助於MnO(2×1)的形成。結合上述觀察,我們在錳鍍量為0.85ML、氧氣分壓為5×10−7mbar,加熱功率為2W 時,可以在表面形成面積大片且一致的MnO(2×1)條紋結構,能夠為後續研究金屬氧化物薄膜的磁性提供良好的平台。
Most of bulk transition metal oxides are antiferromagnetic insulators [1] [2] [3], and the antiferromagnetism can be well explained by superexchange interaction. However, there is almost no research on the magnetism of 2D transition metal oxides using scanning tunneling microscopy (STM). Therefore, the final goal of this thesis is to grow high-quality Mn-oxide
structure and study their magnetic properties by SP-STM. Nevertheless, the primary focus of this work lies in examining the surface morphology of Mn-oxide films. The first section provide an overview of the Ag(001) and the Mn/Ag(001) system, while the later sections detail the Mn-oxide/Ag(001) system, investigate how its morphology evolves under different growth
conditions.
For the Mn/Ag(001) system, experimental studies have shown that Mn does not readily form a stable monolayer on the Ag(001) surface. Instead, Mn atoms tend to interact strongly with the Ag substrate, leading to the formation of a Mn–Ag surface alloy. This alloying behavior becomes more pronounced at higher Mn coverage or elevated substrate temperatures, under
which the Mn layer becomes increasingly unstable.
For the Mn-oxide/Ag(001) system, the surface morphology of Mn-oxide is found to be highly sensitive to growth conditions, resulting in the formation of various oxide phases. This thesis investigates how the morphology evolves with oxygen partial pressure, Mn deposition, and heating power during oxidation. The results show that increasing the oxygen partial pressure promotes the formation of extended MnO(2 × 1) domains on the surface. By fixing other parameters and changing the Mn deposition, the results indicate that if Mn deposition is higher than a certain level, it cannot help to form the MnO(2 × 1) on the surface, but instead forms adisordered structure, (4 × 2), c(4 × 4) and (12 × 12) in sequence. Furthermore, experiments involving different heating powers indicate that excessive oxidation temperature significantly reduces surface coverage of the MnO(2×1)phase. Theseresults suggest that a moderate oxidation temperature is crucial for stabilizing the MnO(2×1). Based on these findings, a large and uniform MnO(2×1) can be reliably grown when the Mn deposition is set to 0.85ML, the oxygen partial pressure is maintained at 5 × 10−7 mbar, and the heating power is adjusted to 2W. These optimized conditions provide a promising platform for future studies on the magnetic properties of transition metal oxide films.