研究生: |
林鈞章 Chun-Chang Lin |
---|---|
論文名稱: |
利用鋅指蛋白結合感應晶片發展偵測鋅離子之系統 Application of zinc finger protein-conjugated sensor chip for the detection of zinc ions |
指導教授: |
林立元
Lih-Yuan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 表面電漿共振 、金屬感應轉錄因子 、鋅指 、鋅離子 、生物感應器 |
外文關鍵詞: | surface plasmon resonance, MTF-1, zinc finger, zinc ion, biosensor |
相關次數: | 點閱:92 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MTF-1是一個能調控金屬硫蛋白基因的轉錄因子,它的N端由六個連續的鋅指區域所構成,而C端則包括了三個轉錄活化區域,依序為acidic region、proline-rich region及serine/threonine-rich region。MTF-1的鋅指區域可以感應鋅離子濃度並且結合到特定DNA序列上。在本篇研究中,我們試著純化MTF-1的鋅指區域部分,希望透過鋅指區域蛋白質與表面電漿共振技術的結合,發展出一套專一性用來偵測鋅離子濃度的生物感應系統。我們先利用大腸桿菌系統表現glutathione-S-transferase與鋅指區域的融合蛋白,並且以glutathione beads做初步的純化,接著再以膠體層析管柱進一步分離GST-6ZF與其他蛋白質。把純化過後的GST-6ZF固定在感應片上,接著測試鋅、鈣、鎘、鎳、鈷及鎂等六種金屬離子在不同pH情況下與鋅指感應片的結合情形,發現在pH 4的情況下,鋅指感應片與鋅離子結合的能力優於其他金屬。我們測試了緩衝溶液中各種成份,包括NaCl、Tween-20對金屬與zinc finger感應片之間結合能力的影響,也分析了鋅指感應片對鋅離子的靈敏度,發現即使鋅離子濃度低到1μM,鋅指感應片仍然可以有效偵測。由以上實驗得知,zinc finger感應片在特定的情況下,對鋅離子是有其專一性與靈敏度的。
Metal-responsive transcription factor 1 (MTF-1) is a transcription factor which regulates the gene expression of several metal inducible genes. The N-terminus of MTF-1 is consist of six zinc fingers, and the C-terminus contains three domains associated with transcriptional activation. The zinc finger domains of MTF-1 are able to sense the concentration change of Zn(Ⅱ) and bind to the metal response elements (MREs). In this study, we attempt to purify the zinc finger domains of MTF-1, and try to establish a biomolecule-based biosensor system which is specific for Zn(Ⅱ) detection through the combination of zinc finger protein-conjugated sensor chip and surface plasmon resonance technology. We expressed the glutathione-S-transferase and zinc finger protein fusion protein (GST-6ZF) in E. coli. This fusion protein was initially purified with glutathione beads, followed by gel filtration chromatography. The purified GST-6ZF was immobilized onto a carboxy- methylated dextran matrix (CM5 chip). We evaluted the interaction at different pH values between the zinc finger sensor chip and six metal ions, including Zn(Ⅱ), Ca(Ⅱ), Cd(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Mg(Ⅱ). It is found that the interaction between zinc finger sensor chip and Zn(Ⅱ) is much stronger than other metal ions at pH 4. The sensitivity of the zinc finger sensor chip to Zn(Ⅱ) is also evaluated. The sensor chip detected the zinc concentration is low as 1μM. Our results show the possibility of using MTF-1 to develop the detection system for bioavailable zinc ions.
Andrews, G.K. (1990) Regulation of metallothionein gene expression. Prog Food Nutr Sci, 14, 193-258.
Andrews, G.K. (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol, 59, 95-104.
Andrews, G.K., Fernando, L.P., Moore, K.L., Dalton, T.P. and Sobieski, R.J. (1996) Avian metallothioneins: structure, regulation and evolution. J Nutr, 126, 1317S-1323S.
Bittel, D., Dalton, T., Samson, S.L., Gedamu, L. and Andrews, G.K. (1998) The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem, 273, 7127-7133.
Bittel, D.C., Smirnova, I.V. and Andrews, G.K. (2000) Functional heterogeneity in the zinc fingers of metalloregulatory protein metal response element-binding transcription factor-1. J Biol Chem, 275, 37194-37201.
Bontidean, I., Ahlqvist, J., Mulchandani, A., Chen, W., Bae, W., Mehra, R.K., Mortari, A. and Csoregi, E. (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron, 18, 547-553.
Bontidean, I., Berggren, C., Johansson, G., Csoregi, E., Mattiasson, B., Lloyd, J.R., Jakeman, K.J. and Brown, N.L. (1998) Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal Chem, 70, 4162-4169.
Bontidean, I., Lloyd, J.R., Hobman, J.L., Wilson, J.R., Csoregi, E., Mattiasson, B. and Brown, N.L. (2000) Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J Inorg Biochem, 79, 225-229.
Brown, N.L., Lloyd, J.R., Jakeman, K., Hobman, J.L., Bontidean, I., Mattiasson, B. and Csoregi, E. (1998) Heavy metal resistance genes and proteins in bacteria and their application. Biochem Soc Trans, 26, 662-665.
Brugnera, E., Georgiev, O., Radtke, F., Heuchel, R., Baker, E., Sutherland, G.R. and Schaffner, W. (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res, 22, 3167-3173.
Chen, X., Agarwal, A. and Giedroc, D.P. (1998) Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1. Biochemistry, 37, 11152-11161.
Chen, X., Chu, M. and Giedroc, D.P. (1999) MRE-Binding transcription factor-1: weak zinc-binding finger domains 5 and 6 modulate the structure, affinity, and specificity of the metal-response element complex. Biochemistry, 38, 12915-12925.
Coleman, J.E. (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem, 61, 897-946.
Culotta, V.C. and Hamer, D.H. (1989) Fine mapping of a mouse metallothionein gene metal response element. Mol Cell Biol, 9, 1376-1380.
Dabeka, R.W. (1989) Graphite-furnace atomic absorption spectrometric determination of lead, cadmium, cobalt and nickel in infant formulas and evaporated milks after nitric-perchloric acid digestion and coprecipitation with ammonium pyrrolidine dithiocarbamate. Sci Total Environ, 89, 271-277.
Dalton, T., Palmiter, R.D. and Andrews, G.K. (1994) Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res, 22, 5016-5023.
Dalton, T.P., Bittel, D. and Andrews, G.K. (1997) Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol Cell Biol, 17, 2781-2789.
Giedroc, D.P., Chen, X., Pennella, M.A. and LiWang, A.C. (2001) Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1: an NMR and zinc-binding study. J Biol Chem, 276, 42322-42332.
Guerrerio, A.L. and Berg, J.M. (2004) Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1). Biochemistry, 43, 5437-5444.
Hamdi, S.A., Nassif, O.I. and Ardawi, M.S. (1997) Effect of marginal or severe dietary zinc deficiency on testicular development and functions of the rat. Arch Androl, 38, 243-253.
Heuchel, R., Radtke, F., Georgiev, O., Stark, G., Aguet, M. and Schaffner, W. (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. Embo J, 13, 2870-2875.
Jiang, H., Daniels, P.J. and Andrews, G.K. (2003) Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter. J Biol Chem, 278, 30394-30402.
Koizumi, S., Suzuki, K., Ogra, Y., Gong, P. and Otuska, F. (2000) Roles of zinc fingers and other regions of the transcription factor human MTF-1 in zinc-regulated DNA binding. J Cell Physiol, 185, 464-472.
Krawczynski vel Krawczyk, T., Moszczynska, M. and Trojanowicz, M. (2000) Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor. Biosens Bioelectron, 15, 681-691.
Kuswandi, B. (2003) Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions. Anal Bioanal Chem, 376, 1104-1110.
Lee, W., Haslinger, A., Karin, M. and Tjian, R. (1987) Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature, 325, 368-372.
Liska, S.K., Kerkay, J. and Pearson, K.H. (1985) Determination of zinc and copper in urine using Zeeman effect flame atomic absorption spectroscopy. Clin Chim Acta, 151, 231-236.
Lu, Y., Liu, J., Li, J., Bruesehoff, P.J., Pavot, C.M. and Brown, A.K. (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron, 18, 529-540.
MacDonald, R.S. (2000) The role of zinc in growth and cell proliferation. J Nutr, 130, 1500S-1508S.
Maret, W. and Sandstead, H.H. (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol, 20, 3-18.
McCall, K.A., Huang, C. and Fierke, C.A. (2000) Function and mechanism of zinc metalloenzymes. J Nutr, 130, 1437S-1446S.
Otsuka, F., Iwamatsu, A., Suzuki, K., Ohsawa, M., Hamer, D.H. and Koizumi, S. (1994) Purification and characterization of a protein that binds to metal responsive elements of the human metallothionein IIA gene. J Biol Chem, 269, 23700-23707.
Patrick, L. (2003) Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev, 8, 106-128.
Potter, B.M., Feng, L.S., Parasuram, P., Matskevich, V.A., Wilson, J.A., Andrews, G.K. and Laity, J.H. (2005) The six zinc fingers of metal-responsive element binding transcription factor-1 form stable and quasi-ordered structures with relatively small differences in zinc affinities. J Biol Chem, 280, 28529-28540.
Prasad, A.S. (1998) Zinc and immunity. Mol Cell Biochem, 188, 63-69.
Radtke, F., Georgiev, O., Muller, H.P., Brugnera, E. and Schaffner, W. (1995) Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res, 23, 2277-2286.
Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z. and Schaffner, W. (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. Embo J, 12, 1355-1362.
Ramanathan, S., Ensor, M. and Daunert, S. (1997) Bacterial biosensors for monitoring toxic metals. Trends Biotechnol, 15, 500-506.
Rensing, C. and Maier, R.M. (2003) Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf, 56, 140-147.
Riedel, K., Kunze, G. and Konig, A. (2002) Microbial sensors on a respiratory basis for wastewater monitoring. Adv Biochem Eng Biotechnol, 75, 81-118.
Saber, R. and Piskin, E. (2003) Investigation of complexation of immobilized metallothionein with Zn(II) and Cd(II) ions using piezoelectric crystals. Biosens Bioelectron, 18, 1039-1046.
Stuart, G.W., Searle, P.F., Chen, H.Y., Brinster, R.L. and Palmiter, R.D. (1984) A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A, 81, 7318-7322.
Stuart, G.W., Searle, P.F. and Palmiter, R.D. (1985) Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature, 317, 828-831.
Tchounwou, P.B., Ayensu, W.K., Ninashvili, N. and Sutton, D. (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol, 18, 149-175.
Vasak, M. (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol, 19, 13-17.
Verma, N. and Singh, M. (2005) Biosensors for heavy metals. Biometals, 18, 121-129.
Westin, G. and Schaffner, W. (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. Embo J, 7, 3763-3770.
Wu, C.M. and Lin, L.Y. (2004) Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance. Biosens Bioelectron, 20, 864-871.