簡易檢索 / 詳目顯示

研究生: 陳鼎志
論文名稱: 以被覆TiO2之玻璃珠填充床處理三氯乙烯之研究
Gas phase photocatalytic oxidation of trichloroethylene over TiO2 supported on glass bead in a packed bed
指導教授: 黃世傑
Shyh-Jye Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 64
中文關鍵詞: 光催化TCE填充床TiO2
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液相與氣相的光催化反應已被廣泛的探討,其中應用於毒化物的處理方面更是被熱烈的研究。本研究之目的在於使用被覆奈米級TiO2之玻璃珠之填充床來處理三氯乙烯(Trichloro- ethylene,TCE)氣體,改變進氣流量、濃度及溼度以及反應溫度來探討其對於TCE之去除率、反應速率與礦化率之影響。實驗並輔助以批次反應器來探討反應溼度對於礦化率影響。實驗結果顯示,TCE之去除效率隨氣體流量的減少、入口濃度的下降、反應溼度的下降而上升。對於TCE的反應速率而言,最佳之氣體流量為300ml/min,而在反應溫度的研究發現在高滯留時間時,去除效率隨溫度上升而上升但在低滯留時間時反應在50℃時有一最佳值,這是因為在低滯留時間時溫度過高會造成TCE在觸媒表面之吸附能力下降而使其成為速率決定步驟,故造成去除效率下降。而在批次反應器之研究發現,TCE之礦化率隨溼度上升而下降,與連續式反應器結果類似。


    摘要 總目錄 Ⅰ 圖目錄………………………………………………………………….Ⅳ 表目錄………………………………………………………………….Ⅶ 第1章 序論 1 1.1 研究緣起 1 1.2 研究方向 2 第2章 文獻回顧 6 2.1 光催化反應之簡介 6 2.2 TiO2之簡介 7 2.3 TiO2之製備 7 2.4 量子效應 8 2.5 反應機構 9 2.6 三氯乙烯之簡介 10 2.7 三氯乙烯之光催化反應 11 2.8 水氣對TCE光催化反應之影響 12 2.9 溫度對TCE光催化反應的影響 14 2.10 酸鹼對反應的影響 15 2.11 觸媒改質 15 2.12 反應器 16 第3章 材料與方法 23 3.1 實驗藥品 23 3.2 實驗儀器 23 3.3 連續式反應器 25 3.3.1 操作參數 26 3.4 批次反應器 27 3.4.1 觸媒表面酸鹼度實驗 27 3.4.2 溼度對反應之影響 27 3.4.3 TiO2的製備 28 3.4.4 TiO2的改質 28 3.5 分析方法 28 3.6 檢量線的製作 29 第4章 結果與討論 33 4.1 連續式反應器 33 4.1.1 反應溫度對TCE去除效率的影響 33 4.1.2 進氣流量與入口濃度對TCE去除效率的影響 34 4.1.3 TCE礦化率之研究 35 4.1.4 光源強度對光催化反應之影響 37 4.1.5 相對溼度對光催化反應之影響 37 4.2 批次反應器 38 4.2.1 相對溼度對光催化反應的影響 38 4.2.2 酸鹼度對TCE光催化反應之影響 39 4.2.3 添加金屬離子對TiO2反應性之影響 39 4.2.4 乾膠燒結溫度對光催化反應之影響 40 4.2.5 以不同醇類進行溶膠-凝膠合成觸媒性質之比較 42 第5章 結論 60 參考文獻 61 圖目錄 圖2-1. 量子效應 17 圖2-2. 觸媒改質 19 圖2-3. Immersion well photoreactor 20 圖2-4. Annular photoreactor 20 圖2-5. Flat walls photoreactor 21 圖2-6. Film type photoreactor 21 圖2-7. Multilamp photoreactor 22 圖2-8. Elliptical photoreactor 22 圖3-1. 實驗裝置圖(連續反應) 31 圖3-2. 實驗裝置圖(批次反應) 32 圖3-3. TCE之檢量線 32 圖4-1. 反應器穩定性測試 44 圖4-2. 開關燈實驗 44 圖4-3. TCE在不同溫度下之去除效率 45 圖4-4. 不同溫度下去除效率與滯留時間之關係 45 圖4-5. 進氣流量對TCE去除率之影響 46 圖4-6. 進氣流量對反應速率之影響 46 圖4-7. TCE入口濃度對去除效率的影響 47 圖4-8. TCE入口濃度對反應速率的影響 47 圖4-9. 不同流量下去除效率與TCE入口濃度之關係 48 圖4-10. 不同流量下反應速率與TCE入口濃度之關係 48 圖4-11. 不同氣體流量下之最大反應速率 49 圖4-12. 不同溫度下出口CO2濃度與滯留時間之關係 49 圖4-13. 進氣流量對低濃度TCE去除率與反應器出口CO2濃度之影響 50 圖4-14. 反應床高對TCE反應速率與礦化率之影響 50 圖4-15. TCE入口濃度對礦化率與出口CO2濃度之影響 51 圖4-16. CO2出口濃度與TCE反應速率之關係 51 圖4-17. 光源強度對TCE去除效率的影響 52 圖4-18. TCE去除效率與相對溼度之關係 52 圖4-19. 不同溼度下TCE(C/C0)與時間之關係 53 圖4-20. 出口CO2濃度與相對溼度之關係 53 圖4-21. 不同起始相對溼度下TCE之礦化率與時間之關係 54 圖4-22. 觸媒在不同酸鹼度下反應性之比較 54 圖4-23. 添加不同金屬離子反應性之比較 55 圖4-24. 不同鍛燒溫度下觸媒比較 55 圖4-25. 不同鍛燒溫度下,TiO2之X-RAY繞射圖 56 圖4-26. P-25的X-RAY繞射圖 56 圖4- 27. 不同前驅物觸媒與P-25之比較 58 圖4-28. 比較不同乾膠,鍛燒溫度對TiO2反應性之影響 59 表目錄 表1-1.揮發性有機物處理方式之比較 4 表1-2.光催化反應的應用 5 表2-1. Physical and chemical properties of TiO2 18 表2-2. Physical and chemical properties of TCE 18 表3-1. Physical and chemical properties of P-25(DEGUSSA) 30 表4-1. 以XRD圖形推估TiO2之粒徑 57 表4-2. TiO2兩種晶體主要X-Ray繞射峰所在位子 57

    Amama, P. B., Itoh, K. and Murabayashi, M. Photocatalytic oxidation of trichloroethylene in humidified atmosphere. Journal of Molecular Catalysis A: Chemical (2001), 176(1-2), 165-172.

    Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K and Fujishima A Induction of cytotoxicity by photoexcited TiO2 particles. Cancer research (1992), 52(8), 2346-2348.

    Choi, W., Termin, A. and Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry (1994), 98(51), 13669-13679.

    Fan, J. and Yates, J. T., Jr. Mechanism of Photooxidation of Trichloroethylene on TiO2: Detection of Intermediates by Infrared Spectroscopy. Journal of the American Chemical Society (1996), 118(19), 4686-4692.

    Faust, B. C., Hoffmann, M. R. and Bahnemann, D. W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of iron oxide (Fe2O3). Journal of Physical Chemistry (1989), 93(17), 6371-6381.

    Fujishima, A., Rao, T. N. and Tryk, D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews (2000), 1(1), 1-21.

    Pathirana, H. M. K. K. and Maithreepala, R. A. Photodegradation of 3,4-dichloropropionamide in aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 102(2-3), 273-277.

    Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (1995), 95(1), 69-96.

    Ireland J. C., Klostermann P., Rice E. W. and Clark R. M. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Applied and Environmental Microbiology (1993), 59(5), 1668-1670.

    Jacoby, W. A., Blake, D. M., Noble, R. D. and Koval, C. A. Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Journal of Catalysis (1995), 157(1), 87-96.

    Jardim, W. F., Alberici, R. M., Takiyama, M. M. K. and Huang, C. P. Gas-phase photocatalytic destruction of trichloroethylene (TCE) using UV/TiO2. Hazardous and Industrial Wastes (1994), 26, 230-238.

    Kamat, P. V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews (1993), 93(1), 267-300.

    Keller, V., Bernhardt, P. and Garin, F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of Catalysis (2003), 215(1), 129-138.

    Kim, S. B., Hwang, H. T. and Hong, S. C. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere (2002), 48(4), 437-444.

    Kim, S. B. and Hong, S. C.. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis, B: Environmental (2002), 35(4), 305-315.

    Kishimoto, H., Takahama, K., Hashimoto, N., Aoi, Y. and Deki, S. Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). Journal of Materials Chemistry (1998), 8(9), 2019-2024.

    Linsebigler, A. L., Lu, G. and Yates, J. T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews (1995), 95(3), 735-758.

    Martin, S. T., Herrmann, H., Choi, W. and Hoffmann, M. R. Time-resolved microwave conductivity. Part 1. TiO2 photoreactivity and size quantization. Journal of the Chemical Society, Faraday Transactions (1994), 90(21), 3315-3322.

    Nimlos, M. R., Jacoby, W. A., Blake, D. M. and Milne, T. A. Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas-phase photocatalytic oxidation of trichloroethylene over titanium oxide: products and mechanisms. Environmental Science and Technology (1993), 27(4), 732-740.

    Nishimoto, S., Ohtani, B., Kajiwara, H. and Kagiya, T. Correlation of the crystal structure of titanium dioxide prepared from titanium tetra-2-propoxide with the photocatalytic activity for redox reactions in aqueous propan-2-ol and silver salt solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases (1985), 81(1), 61-68.

    Obee, T. N. and Brown, R. T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environmental Science and Technology (1995), 29(5), 1223-1231.

    Pearl, J. and Ollis, D. F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. Journal of Catalysis (1992), 136(2), 554-565.

    Pichat, P. and Hermann, J. M. Adsorption-desorption, related mobility and reactivity in photocatalysis. In: Serpone, N., Pelizzetti, E. (Eds.) Photocatalysis: Fundamentals and applications. John Wiley & Sons, NTC, (1989), pp. 217-250.

    Sanchez, B., Cardona, A. I., Romero, M., Avila, P. and Bahamonde, A. Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts. Catalysis Today (1999), 54(2-3), 369-377.

    Schiavello M. Heterogeneous Photocatalysis, Wiley, New York, (1997), pp. 175-185.

    Siripala, W., Ivanovskaya, A., Jaramillo, T. F., Baeck, S. H. and McFarland, E. W. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells (2003), 77(3), 229-237.

    Sjogren, J. C. and Sierka, R. A. Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Applied and Environmental Microbiology (1994), 60(1), 344-347.

    Wang, C. Y., Liu, C. Y. and Shen, T. The photocatalytic oxidation of phenylmercaptotetrazole in TiO2 dispersions. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 109(1), 65-70.

    Wang, C. Y., Boettcher, C., Bahnemann, D. W. and Dohrmann, J. K. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. Journal of Materials Chemistry (2003), 13(9), 2322-2329.

    Wang, K. H., Tsai, H. H. and Hsieh, Y. H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Applied Catalysis, B: Environmental (1998), 17(4), 313-320.

    Zheng, S., Huang, Q., Zhou, J. and Wang, B. A study on dye photoremoval in TiO2 suspension solution. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 108(2-3), 235-238.

    Zou, Z., Ye, J. and Arakawa, H. Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. International Journal of Hydrogen Energy (2003), 28(6), 663-669.

    劉國棟,“VOC 管制趨勢展望”,工業污染防治,48 期,pp. 15-31,
    1993。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE