簡易檢索 / 詳目顯示

研究生: 施宏儒
Shih, Hung-Ju
論文名稱: 降低致癌基因MCT-1表現抑制異種移植腫瘤發生與Shc-Ras-ERK訊息傳遞路徑
Reduction of MCT-1 oncogene suppresses xenograft tumorigenicity and Shc-Ras-ERK pathway
指導教授: 徐欣伶
Hsu, Hsin-Ling
劉銀樟
Liu, Yin-Chang
口試委員: 王陸海
Wang, Lu-Hai
陳振陽
Chen, Jen-Yang
林素芳
Lin, Su-Fang
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 71
中文關鍵詞: MCT-1Shc致癌蛋白
外文關鍵詞: MCT-1, Shc, tumorigenicity
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Oncoprotein MCT-1 (Multiple Copies in T-cell malignancies) is a regulator of cell proliferation and survival. However, the MCT-1-mediated oncogenic mechanism, which confers to tumor development, remains unclear. In this study, the knockdown of MCT-1 is demonstrated that suppressed Shc expression followed by reduction of Ras-ERK1/2-cyclin D1 pathway is observed both in vitro and in vivo. MCT-1 knockdown is also found to lead to p53 accumulation accompanying with proteolysis of the caspase substrates, integrin β4 and vimentin. Furthermore, we discover that the loss of MCT-1 confers cellular susceptibility to apoptosis in undernourished condition and concomitantly enhances the activation of caspases 3 and 7, but caspase 6. Interfering MCT-1 oncogenicity with shRNA in non-small cell lung cancer cell lines (H1299 and A549) is found to effectively suppress cancer cell growth (proliferation and survival). The reduction of MCT-1 also significantly suppresses xenograft tumor growth associated with the inhibition of Shc pathway. Our clinical evidence further demonstrates that both MCT-1 and Shc genes are evidently stimulated during malignant progression of human breast cancer. Accordingly, MCT-1 activation may be recognized as a prognostic tumor marker and it is prospective to be a promising therapeutic target for cancer treatment.


    致癌蛋白MCT-1 (Multiple copies in T-cell malignancies) 是細胞增生與細胞存活的調節者。然而,MCT-1調控腫瘤生成的致癌機制仍不清楚。在本篇論文中我們證明,在人類乳腺細胞株或是非小細胞肺癌細胞株降低MCT-1蛋白質量,會減少Shc的表現量,同時降低Ras-ERK1/2-cyclin D1訊息傳遞路逕。此外,降低MCT-1表現將導致p53抗癌蛋白質的累積,進而引起caspase受質integrin β4和vimentin的蛋白質水解。再者,減少MCT-1蛋白質量將提高細胞對養分不足環境的敏感性,進一步增加caspase 3和caspase 7之活化與養分不足造成之細胞凋亡,但不影響caspase 6之功能活性。藉由MCT-1 shRNA (抑制MCT-1表現量) 可降低MCT-1在非小細胞肺癌細胞株 (H1299和A549) 的腫瘤生長能力,且有效地抑制癌細胞的生長 (增生與存活),並顯著抑制Shc訊息傳遞路逕與異種移植腫瘤發生。分析臨床乳癌病患的mRNA表現量,進一步證明了MCT-1和Shc的基因表現之相關性,顯然在人類乳腺癌的惡性腫瘤發展過程中呈現高量表現。我們推測,MCT-1蛋白質可能做為預期偵測的腫瘤標誌,且MCT-1是一相當有前瞻性的癌症治療的治療標的。

    誌謝 iii Abstract iv 中文摘要 v Chapter 1. Introduction 1 Chapter 2. Materials and methods 7 2.1 Antibodies 7 2.2 Cell culture and transfections 7 2.3 Western blotting analysis 8 2.4 MTT cell proliferation and cell viability assay 9 2.5 Immunofluorescence microscopy 10 2.6 Cell cycle and call death assays 11 2.7 Caspase 3 activity assay 12 2.8 Ras activity assay 12 2.9 Trypan blue exclusion assay of cell viability 13 2.10 Clonogenic growth assays 13 2.11 RNA isolation and quantitative real-time polymerase chain reaction (Q-RT-PCR) 14 2.12 Xenograft tumorigenicity in nude mice 15 2.13 Immunohistochemistry study of the xenograft tumor tissues from mice xenografts 15 2.14 Analysis of MCT-1 and Shc mRNA levels in human breast cancers 16 2.15 Statistics 17 Chapter 3. Results 18 3.1 MCT-1 controls Shc-Ras-Raf-MEK-ERK signaling cascade 18 3.2 Knockdown of MCT-1 suppresses cell growth of NSCLC, H1299 20 3.3 Removal of MCT-1 suppresses A549 cell growth 21 3.4 Loss of MCT-1 enhances cell death and cleavage of caspase substrates 22 3.5 Stimulated cleavage of PARP, caspase 3 and 7 by MCT-1 knockdown 24 3.6 Reduction of MCT-1 confers cellular sensitivity to the therapeutic agent 25 3.7 Silencing MCT-1 prominently suppresses H1299 xenograft tumorigenicity 27 3.8 MCT-1 knockdown attenuates tumor growth of A549 xenografts 29 3.9 MCT-1 and Shc genes are highly expressed in human breast cancers 31 Chapter 4. Discussion 33 4.1 Knockdown of MCT-1 suppresses Shc signaling pathway and cell proliferation 33 4.2 High frequencies of apoptosis induced by starvation stress and chemo-agent treatment in the absence of MCT-1 35 4.3 Concurrent induction of MCT-1 and Shc expression in cancers 36 Chapter 5. References 39 Figures 52 Figure 1. Endogenous MCT-1 protein is knocked down in MCF-10, H1299 and A549 cells 52 Figure 2. Shc protein and mRNA levels are decreased when MCT-1 is knocked down in MCF-10A cells 53 Figure 3. Knockdown of MCT-1 reduces Ras-ERK1/2 signaling transduction and decreases cell proliferation 54 Figure 4. Removal of MCT-1 in H1299 cells reduces Shc-ERK1/2-cyclin D1 pathway and cell proliferation 55 Figure 5. Shc-ERK1/2-cyclin D1 pathway and cell growth rate are repressed by knockdown of MCT-1 in A549 cells 56 Figure 6. Knockdown of MCT-1 in MCF-10A cells increase spontaneous apoptosis 57 Figure 7. MCT-1 deficiency in MCF-10A cells cause accumulation of p53 and activation of caspase 3 58 Figure 8. Knockdown of MCT-1 suppresses cell growth but stimulates cleavage of PARP, caspases 3 and 7 59 Figure 9. Cells silenced MCT-1 are more responsive to the cancer therapeutic drug 60 Figure 10. Loss of MCT-1 pronouncedly suppresses H1299 xenograft tumorigenicity 61 Figure 11. Knockdown of MCT-1 decreases Shc mRNA and protein levels in H1299 xenograft tumors 62 Figure 12. MCT-1 knockdown significantly attenuates tumor growth of A549 xenografts 63 Figure 13. MCT-1 deficiency reduces Shc protein and mRNA levels in A549 xenograft tumors 64 Figure 14. Predominant expression of MCT-1 mRNA in human breast cancer patients (BCPs) 65 Figure 15. MCT-1 and Shc mRNA highly express in BCPs 66 Figure S1. Cellular MCT-1 protein amount is decreased by MCT-1 shRNA treatment 67 Figure S2. Silencing of MCT-1 in MCF-10A and H1299 do not affect the cell cycle profiles 68 Figure S3. Knockdown of MCT-1 reduces cell growth as assessed by clonogenic growth assay 69 Tables 70 Table 1. Elevated MCT-1 gene expression in BCPs 70 Table 2. Correlation of MCT-1 and Shc gene expressions in BCPs 71

    Adams, J. M., and Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324-1337.
    Balmanno, K., and Cook, S. J. (1999). Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18, 3085-3097.
    Boelens, M. C., van den Berg, A., Vogelzang, I., Wesseling, J., Postma, D. S., Timens, W., and Groen, H. J. (2007). Differential expression and distribution of epithelial adhesion molecules in non-small cell lung cancer and normal bronchus. J Clin Pathol 60, 608-614.
    Bonfini, L., Migliaccio, E., Pelicci, G., Lanfrancone, L., and Pelicci, P. G. (1996). Not all Shc's roads lead to Ras. Trends Biochem Sci 21, 257-261.
    Brinton, L. A., Gridley, G., Persson, I., Baron, J., and Bergqvist, A. (1997). Cancer risk after a hospital discharge diagnosis of endometriosis. Am J Obstet Gynecol 176, 572-579.
    Byun, Y., Chen, F., Chang, R., Trivedi, M., Green, K. J., and Cryns, V. L. (2001). Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 8, 443-450.
    Calvo, F., Agudo-Ibanez, L., and Crespo, P. (2010). The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays 32, 412-421.
    Cryns, V., and Yuan, J. (1998). Proteases to die for. Genes Dev 12, 1551-1570.
    Dierov, J., Prosniak, M., Gallia, G., and Gartenhaus, R. B. (1999). Increased G1 cyclin/cdk activity in cells overexpressing the candidate oncogene, MCT-1. J Cell Biochem 74, 544-550.
    Evan, G., and Littlewood, T. (1998). A matter of life and cell death. Science 281, 1317-1322.
    Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J., and van Bree, C. (2006). Clonogenic assay of cells in vitro. Nat Protoc 1, 2315-2319.
    Gay, B., Suarez, S., Caravatti, G., Furet, P., Meyer, T., and Schoepfer, J. (1999). Selective GRB2 SH2 inhibitors as anti-Ras therapy. Int J Cancer 83, 235-241.
    Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., Bus, C. J., Kadkhoda, K., Wiechec, E., Halayko, A. J., and Los, M. (2009). Apoptosis and cancer: mutations within caspase genes. J Med Genet 46, 497-510.
    Giancotti, F. G. (2007). Targeting integrin beta4 for cancer and anti-angiogenic therapy. Trends Pharmacol Sci 28, 506-511.
    Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W. J., Inghirami, G., and Giancotti, F. G. (2006). Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126, 489-502.
    Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.
    Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
    Honda, H., Barrueto, F. F., Gogusev, J., Im, D. D., and Morin, P. J. (2008). Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis. Reprod Biol Endocrinol 6, 59.
    Hsiang, Y. H., Hertzberg, R., Hecht, S., and Liu, L. F. (1985). Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260, 14873-14878.
    Hsu, H. L., Choy, C. O., Kasiappan, R., Shih, H. J., Sawyer, J. R., Shu, C. L., Chu, K. L., Chen, Y. R., Hsu, H. F., and Gartenhaus, R. B. (2007). MCT-1 oncogene downregulates p53 and destabilizes genome structure in the response to DNA double-strand damage. DNA Repair (Amst) 6, 1319-1332.
    Hsu, H. L., Shi, B., and Gartenhaus, R. B. (2005). The MCT-1 oncogene product impairs cell cycle checkpoint control and transforms human mammary epithelial cells. Oncogene 24, 4956-4964.
    Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
    Innocente, S. A., and Lee, J. M. (2005). p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS Lett 579, 1001-1007.
    Jackson, J. G., Yoneda, T., Clark, G. M., and Yee, D. (2000). Elevated levels of p66 Shc are found in breast cancer cell lines and primary tumors with high metastatic potential. Clin Cancer Res 6, 1135-1139.
    Johnson, N., Ng, T. T., and Parkin, J. M. (1997). Camptothecin causes cell cycle perturbations within T-lymphoblastoid cells followed by dose dependent induction of apoptosis. Leuk Res 21, 961-972.
    Junttila, M. R., and Evan, G. I. (2009). p53--a Jack of all trades but master of none. Nat Rev Cancer 9, 821-829.
    Karreth, F. A., and Tuveson, D. A. (2009). Modelling oncogenic Ras/Raf signalling in the mouse. Curr Opin Genet Dev 19, 4-11.
    Kasiappan, R., Shih, H. J., Chu, K. L., Chen, W. T., Liu, H. P., Huang, S. F., Choy, C. O., Shu, C. L., Din, R., Chu, J. S., and Hsu, H. L. (2009). Loss of p53 and MCT-1 overexpression synergistically promote chromosome instability and tumorigenicity. Mol Cancer Res 7, 536-548.
    Kasiappan, R., Shih, H. J., Wu, M. H., Choy, C., Lin, T. D., Chen, L., and Hsu, H. L. (2010). The antagonism between MCT-1 and p53 affects the tumorigenic outcomes. Mol Cancer 9, 311.
    Kasten, M. M., and Giordano, A. (1998). pRb and the cdks in apoptosis and the cell cycle. Cell Death Differ 5, 132-140.
    Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G. (1993). Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53, 3976-3985.
    Kim, H. K., Jeong, M. J., Kong, M. Y., Han, M. Y., Son, K. H., Kim, H. M., Hong, S. H., and Kwon, B. M. (2005). Inhibition of Shc/Grb2 protein-protein interaction suppresses growth of B104-1-1 tumors xenografted in nude mice. Life Sci 78, 321-328.
    Kim, S. J., Ju, J. W., Oh, C. D., Yoon, Y. M., Song, W. K., Kim, J. H., Yoo, Y. J., Bang, O. S., Kang, S. S., and Chun, J. S. (2002). ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J Biol Chem 277, 1332-1339.
    Kojima, K., Konopleva, M., Samudio, I. J., Ruvolo, V., and Andreeff, M. (2007). Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res 67, 3210-3219.
    Kudelka, A. P., Tresukosol, D., Edwards, C. L., Freedman, R. S., Levenback, C., Chantarawiroj, P., Gonzalez de Leon, C., Kim, E. E., Madden, T., Wallin, B., et al. (1996). Phase II study of intravenous topotecan as a 5-day infusion for refractory epithelial ovarian carcinoma. J Clin Oncol 14, 1552-1557.
    Lahat, G., Zhu, Q. S., Huang, K. L., Wang, S., Bolshakov, S., Liu, J., Torres, K., Langley, R. R., Lazar, A. J., Hung, M. C., and Lev, D. (2010). Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 5, e10105.
    Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996). Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271, 20608-20616.
    Lee, M. S., Igawa, T., Chen, S. J., Van Bemmel, D., Lin, J. S., Lin, F. F., Johansson, S. L., Christman, J. K., and Lin, M. F. (2004). p66Shc protein is upregulated by steroid hormones in hormone-sensitive cancer cells and in primary prostate carcinomas. Int J Cancer 108, 672-678.
    Levenson, A. S., Thurn, K. E., Simons, L. A., Veliceasa, D., Jarrett, J., Osipo, C., Jordan, V. C., Volpert, O. V., Satcher, R. L., Jr., and Gartenhaus, R. B. (2005). MCT-1 oncogene contributes to increased in vivo tumorigenicity of MCF7 cells by promotion of angiogenesis and inhibition of apoptosis. Cancer Res 65, 10651-10656.
    Liu, S. C., Sauter, E. R., Clapper, M. L., Feldman, R. S., Levin, L., Chen, S. Y., Yen, T. J., Ross, E., Engstrom, P. F., and Klein-Szanto, A. J. (1998). Markers of cell proliferation in normal epithelia and dysplastic leukoplakias of the oral cavity. Cancer Epidemiol Biomarkers Prev 7, 597-603.
    Lynch, T. J., Jr., Kalish, L., Strauss, G., Elias, A., Skarin, A., Shulman, L. N., Posner, M., and Frei, E., 3rd (1994). Phase II study of topotecan in metastatic non-small-cell lung cancer. J Clin Oncol 12, 347-352.
    Ma, Z., Liu, Z., Wu, R. F., and Terada, L. S. (2010). p66(Shc) restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene 29, 5559-5567.
    Mariani Costantini, R., Falcioni, R., Battista, P., Zupi, G., Kennel, S. J., Colasante, A., Venturo, I., Curio, C. G., and Sacchi, A. (1990). Integrin (alpha 6/beta 4) expression in human lung cancer as monitored by specific monoclonal antibodies. Cancer Res 50, 6107-6112.
    Mazan-Mamczarz, K., Hagner, P. R., Corl, S., Srikantan, S., Wood, W. H., Becker, K. G., Gorospe, M., Keene, J. D., Levenson, A. S., and Gartenhaus, R. B. (2008a). Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype. Oncogene 27, 6151-6163.
    Mazan-Mamczarz, K., Hagner, P. R., Dai, B., Wood, W. H., Zhang, Y., Becker, K. G., Liu, Z., and Gartenhaus, R. B. (2008b). Identification of transformation-related pathways in a breast epithelial cell model using a ribonomics approach. Cancer Res 68, 7730-7735.
    Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L., and Pelicci, P. G. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309-313.
    Migliaccio, E., Mele, S., Salcini, A. E., Pelicci, G., Lai, K. M., Superti-Furga, G., Pawson, T., Di Fiore, P. P., Lanfrancone, L., and Pelicci, P. G. (1997). Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16, 706-716.
    Morishima, N. (1999). Changes in nuclear morphology during apoptosis correlate with vimentin cleavage by different caspases located either upstream or downstream of Bcl-2 action. Genes Cells 4, 401-414.
    Nandi, S., Reinert, L. S., Hachem, A., Mazan-Mamczarz, K., Hagner, P., He, H., and Gartenhaus, R. B. (2007). Phosphorylation of MCT-1 by p44/42 MAPK is required for its stabilization in response to DNA damage. Oncogene 26, 2283-2289.
    Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6, 1028-1042.
    Pacini, S., Pellegrini, M., Migliaccio, E., Patrussi, L., Ulivieri, C., Ventura, A., Carraro, F., Naldini, A., Lanfrancone, L., Pelicci, P., and Baldari, C. T. (2004). p66SHC promotes apoptosis and antagonizes mitogenic signaling in T cells. Mol Cell Biol 24, 1747-1757.
    Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Cavallo, F., Forni, G., Nicoletti, I., Pawson, T., and Pelicci, P. G. (1992). A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70, 93-104.
    Perez-Arellano, I., Gozalbo-Rovira, R., Martinez, A. I., and Cervera, J. (2010). Expression and purification of recombinant human MCT-1 oncogene in insect cells. Protein J 29, 69-74.
    Phelps, M., Phillips, A., Darley, M., and Blaydes, J. P. (2005). MEK-ERK signaling controls Hdm2 oncoprotein expression by regulating hdm2 mRNA export to the cytoplasm. J Biol Chem 280, 16651-16658.
    Pinton, P., and Rizzuto, R. (2008). p66Shc, oxidative stress and aging: importing a lifespan determinant into mitochondria. Cell Cycle 7, 304-308.
    Pratesi, G., Tortoreto, M., Corti, C., Giardini, R., and Zunino, F. (1995). Successful local regional therapy with topotecan of intraperitoneally growing human ovarian carcinoma xenografts. Br J Cancer 71, 525-528.
    Pronk, G. J., McGlade, J., Pelicci, G., Pawson, T., and Bos, J. L. (1993). Insulin-induced phosphorylation of the 46- and 52-kDa Shc proteins. J Biol Chem 268, 5748-5753.
    Prosniak, M., Dierov, J., Okami, K., Tilton, B., Jameson, B., Sawaya, B. E., and Gartenhaus, R. B. (1998). A novel candidate oncogene, MCT-1, is involved in cell cycle progression. Cancer Res 58, 4233-4237.
    Rafehi, H., Orlowski, C., Georgiadis, G. T., Ververis, K., El-Osta, A., and Karagiannis, T. C. (2011). Clonogenic assay: adherent cells. J Vis Exp.
    Ravichandran, K. S. (2001). Signaling via Shc family adapter proteins. Oncogene 20, 6322-6330.
    Reinert, L. S., Shi, B., Nandi, S., Mazan-Mamczarz, K., Vitolo, M., Bachman, K. E., He, H., and Gartenhaus, R. B. (2006). MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles. Cancer Res 66, 8994-9001.
    Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., McMahon, M., Oren, M., and McCormick, F. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321-330.
    Roberts, P. J., and Der, C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310.
    Salcini, A. E., McGlade, J., Pelicci, G., Nicoletti, I., Pawson, T., and Pelicci, P. G. (1994). Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene 9, 2827-2836.
    Saltz, L. (2000). Irinotecan-based combinations for the adjuvant treatment of stage III colon cancer. Oncology (Williston Park) 14, 47-50.
    Satelli, A., and Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68, 3033-3046.
    Segatto, O., Pelicci, G., Giuli, S., Digiesi, G., Di Fiore, P. P., McGlade, J., Pawson, T., and Pelicci, P. G. (1993). Shc products are substrates of erbB-2 kinase. Oncogene 8, 2105-2112.
    Sherr, C. J. (1995). D-type cyclins. Trends Biochem Sci 20, 187-190.
    Shi, B., Hsu, H. L., Evens, A. M., Gordon, L. I., and Gartenhaus, R. B. (2003). Expression of the candidate MCT-1 oncogene in B- and T-cell lymphoid malignancies. Blood 102, 297-302.
    Skabkin, M. A., Skabkina, O. V., Dhote, V., Komar, A. A., Hellen, C. U., and Pestova, T. V. (2010). Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev 24, 1787-1801.
    Slee, E. A., Zhu, H., Chow, S. C., MacFarlane, M., Nicholson, D. W., and Cohen, G. M. (1996). Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J 315 ( Pt 1), 21-24.
    Soldani, C., and Scovassi, A. I. (2002). Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7, 321-328.
    Strober, W. (2001). Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3, Appendix 3B.
    Thiery, J. P., and Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131-142.
    Thornberry, N. A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312-1316.
    Ursini-Siegel, J., Hardy, W. R., Zuo, D., Lam, S. H., Sanguin-Gendreau, V., Cardiff, R. D., Pawson, T., and Muller, W. J. (2008). ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 27, 910-920.
    Veeramani, S., Igawa, T., Yuan, T. C., Lin, F. F., Lee, M. S., Lin, J. S., Johansson, S. L., and Lin, M. F. (2005). Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells. Oncogene 24, 7203-7212.
    Ventura, A., Luzi, L., Pacini, S., Baldari, C. T., and Pelicci, P. G. (2002). The p66Shc longevity gene is silenced through epigenetic modifications of an alternative promoter. J Biol Chem 277, 22370-22376.
    Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J. P., Nevo, J., Gjerdrum, C., Tiron, C., Lorens, J. B., and Ivaska, J. (2011). Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436-1448.
    Werner, M. E., Chen, F., Moyano, J. V., Yehiely, F., Jones, J. C., and Cryns, V. L. (2007). Caspase proteolysis of the integrin beta4 subunit disrupts hemidesmosome assembly, promotes apoptosis, and inhibits cell migration. J Biol Chem 282, 5560-5569.
    Williams, E. J., Dunican, D. J., Green, P. J., Howell, F. V., Derossi, D., Walsh, F. S., and Doherty, P. (1997). Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable Grb2-binding peptide. J Biol Chem 272, 22349-22354.
    Yang, C., Kaushal, V., Haun, R. S., Seth, R., Shah, S. V., and Kaushal, G. P. (2008). Transcriptional activation of caspase-6 and -7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Differ 15, 530-544.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE