簡易檢索 / 詳目顯示

研究生: 張文杰
論文名稱: 不同型式沸水式核反應器之穩定性特性研究
指導教授: 施純寬
Chunkuan Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 158
中文關鍵詞: 核反應器穩定性
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 沸水式反應器是藉由中子碰撞核燃料使其發生核分裂產生巨大的能量,產生出的熱量會使冷卻水在反應器中發生沸騰的現象,其在高功率低流量的情形之下會結合了中子與熱流效應而造成功率與流量的震盪所引起的不穩定效應。而我國有三種不同類型的的BWRs,分別為BWR/4(核一廠)、BWR/6(核二廠)和ABWR(龍門電廠),所以建立一個本土化的穩定性方法論的很重要的。此研究使用LAPUR5.2方法論去分析了核一廠、核二廠和龍門電廠在相同的功率/流量點之上,它們之間同相衰減率和異相衰減率的相比較。然後對於會影響爐心穩定性的參數去做分析研究,看看那些參數在不同型式BWRs之相同的功率/流量點時的差異,並且去分析為何會造成不同型式BWRs在功率/流量點之下會有不同的衰減率。也計算、建立了核一、二廠衰減率為0.8的穩定性運轉邊界,藉由以上的分析可以知道哪種類型的BWRs在穩定性方面較優異。


    In a boiling water reactor (BWRs), when neutrons collide nuclear fuel, huge energy is generated by nuclear fission in the reactor core, and the heat it produced causes the cooling water to boil, producing steam. That it combines the neutron and thermal effects under high power /low-flow causes the instability resulted from oscillation of power and flow.
    In Taiwan, there are three different types of BWRs, one is BWR / 4 (Chinshan Nuclear Power Plant), another is BWR / 6 (Kuosheng Nuclear Power Plant) and the other is ABWR (Lungmen Nuclear Power Plant). Therefore, building a localized stability methodology is crucial.
    LAPUR5.2 methodology is employed in this study to compare the global and regional mode decay rate at the same power / flow points between Chinshan, Kuosheng and Lungmen Nuclear Power Plant. By comparing the parameters that concerns stability of core, we can observe and analyze why different decay rates are generated between different types of BWRs at the same power/flow points. Furthermore, the stability operating boundary of Chinshan and Kuoshen NPP with 0.8 decay ratio also have been built and calculated. According to above analysis, we can figure out which type of BWRs will perform better in stability.

    摘 要 i ABSTRACT ii 目 錄 iv 表目錄 vii 圖目錄 ix 第一章 前言 1 1.1 研究背景 1 1.2 研究的方法與目的 1 第二章 文獻回顧 4 2.1 不同型式BWRs的簡介 4 2.1.1 不同型式BWRs的歷史演進 4 2.1.2 我國不同型式BWRs的簡介 5 2.2 BWR穩定性的簡介 7 2.2.1 穩定性的定義 7 2.2.2 雙相流不穩定性的類型與機制 8 2.2.3 衡量穩定性的依據 9 2.3 影響BWR穩定性之因素與參數靈敏度分析 10 2.3.1 中子動力循環 10 2.3.2 熱流動力循環 12 2.4 穩定性的分析方法與分析軟體 15 2.4.1 實驗方法 16 2.4.2 時域非線性方法 17 2.4.3 頻域線性方法 18 2.5 BWR穩定性運轉邊界的形成 23 第三章 LAPUR5.2方法論 56 3.1 LAPUR5.2方法論之程式簡介 56 3.1.1 LAPUR5.2 56 3.1.2 SIMULATE-3 59 3.1.3 PAPU 60 3.1.4 EXAVERA 62 3.1.5 DRASM 63 3.2 LAPUR5.2方法論之運算過程 64 3.2.1執行SIMULATE-3 64 3.2.2執行PAPU與EXAVERA 66 3.2.3編輯LAPURX輸入檔的資料 67 3.2.4編輯LAPURW輸入檔的資料 69 3.2.5 LAPUR5.2與SIMULATE-3兩者結果的誤差比較修正 71 3.2.6 LAPUR5.2的輸出結果 73 第四章 研究結果與分析 128 4.1 核一廠、核二廠和龍門電廠在相同功率/流量點之下的穩定性分析 128 4.1.2 同相與異相不穩定性的研究 128 4.1.2 熱流與中子參數分析的研究 129 4.2 核一廠、核二廠在相同的衰減率運轉邊界之下的穩定性分析 131 4.3 龍門電廠的穩定性分析 133 第五章 結論與建議 153 5.1 結論 153 5.2 建議 154 參考文獻 155

    [1] J. March-Leuba, and Otaduy, P. J., “A Comparison of BWR Stability measurements with calculations using the code LAPUR-ΙV”, ORNL/TM-8546, Oak Ridge National Laboratory, January 1983
    [2] GN11KI-IN-02.000472.00005, INBERINCO, “Methodology and procedure for calculation of core and channel decay ratios with LAPUR”, Rev.0, 2002.
    [3] Escriva, A. and Munoz-Cobo, J. L., “PAPU Models, Correlations, and User’s Mannul,” ThermalHydraulic and Nuclear Engineering Group, GTIN-02/001, March 2002.
    [4] March-Leuba, J., LAPUR benchmark against in-phase and out-phase stability tests, NUREG/CR-5605, ORNL/TM-1162, 1990.
    [5]Chang-Lung Hsieh, Hao-Tzu Lin ,Show-Chyuan Chiang , Chunkuan Shih , Jong-Rong Wang , Tung-Li Weng, “LAPUR5.2 BWR STABILITY ANALYSIS IN CHINSHAN NUCLEAR POWER PLANT” ICONE14-89587, July 2006.
    [6] http://www.ansn-jp.org/jneslibrary/npp2.pdf
    [7]潘欽, 李進得, 陳沿佳 ,“ABWR區域不穩定性的探討(3/3)”, 國科院國家專題研究計畫NS92-2623-7-007-011-NU , 2003年。
    [8]Umbager J. A., Digiovine A. S., “SIMULATE-3, Advanced Three Dimensional Two-Group Reactor Analysis Code. User’s Manual”, Studsvik/SOA-92/01, 1992.
    [9]Fukuda, M., and Kobori T. (1979) J. Nucl. Sci. Technol., 16, 95.
    [10]Lin Y. N. and Pan C., (1994) Nucl. Eng. Design, 152, 349.
    [11]Van Der Hagen, T.H.J.J., D.D.B. Van Bragt, F.J. Van Der Kaa, 1997, Exploring the Dodewaard Type-I and Type-II Stability; From Start-Up to Shut-down, From Stable to Unstable, Ann. Nucl. Energy, Vol. 24 No. pp.659-669.
    [12]Nayak, A.K., Vijayan, P.K., Saha, D., Venkat Raj, V., Aritomi, M., 2002, Study on the Stability Behavior of a Natural Circulation Pressure Tube Type Boiling Water Reactor, Nuclear Engineering and Design 215 pp.127-137.
    [13]Park, G. C., Podowski, M. Z. Becker, M. and R. T. Lahey, Jr., 1986, The Development of a Closed-Form Analytical Model for the Stability Analysis of Nuclear-Coupled Density Wave Oscillations in BWR, Nucl. Eng. Des., Vol. 92, pp. 253-281.
    [14]Woffinden, F. B. and Niemi, R. O., 1981, Low-flow stability tests at Peach Bottom Atomic Power Station Unit 2 at end of cycle 3, EPRI NP-972.
    [15]Anderson, T.T., 1970, Hydraulic impedance: A tool for predicting boiling loop stability, Nucl. Appl. & Tech., vol.9, pp.422-433.
    [16]Carmichael, L. A., Neimi, R. O., 1978, Transient and Stability test at Peach Bottom Atomic Power Station Unit 2 at end of cycle 2, EPRI NP-564.
    [17]Woffinden, F. B. and Niemi, R. O., 1981, Low-flow stability tests at Peach Bottom Atomic Power Station Unit 2 at end of cycle 3, EPRI NP-972.
    [18]Enomoto, T., Muto, S., Ishizuka, T., Tanabe, A., Mitsutake, T. and Sakurai, M., 1985, Thermal Hydraulic Stability Experiments in Rod Bundle, Proceedings of the Third Int. Topical Meeting on Reactor Thermal Hydraulics, Newport, R. I., USA, Vol. 1, Paper 9.B.
    [19]Kruijf, W.J.M., Sengstag, T., Haas, D.W., Van der Hagen, T.H.J.J., 2004, Experimental Theermohydraulic Stability Map of a Frenon-12 Boilig Water Reactor Facility with High Exit Friction, Nuclear Engineer and Design 229 75-80.
    [20]Meyer, J. E. and Rose, R. P., 1963, Application of a Momentum Integral Model to the Study of Parallel Channel Boiling Flow Oscillation, J, Heat Trans. ASME.
    [21]Yokomizo, O., 1983, Time-Domain Analysis of BWR Core Stability J. Nucl. Sci, and Tech., Vol. 20[1], pp. 63-76.
    [22]March-Leuba, J., Pere, R. B. and Cacuci, D. G., 1984, Calculation of Limit Cycle Amplitudes in Commercial Boiling Water Reactors, Trans. Am. Nucl. Soc., Vol. 46.
    [23]Takigawa, Y., Takeuchi, Y., Tsunoyama, S., Ebata, S., Chan. K.C., Tricoli, C., 1987. Coarso limit cycle analysis with three-dimensional transient code TOSDYN-2 Nucl. Technol. 79, 210-218.
    [24]Wallis, G. B. and Heasly, J. H., 1961, Oscillation in Two-Phase Flow Systems, J. Heat Transfer, ASME, pp. 363-369.
    [25]Lahey, R. T. and Moody, F. J., 1977, The Thermal Hydraulics of a Boiling Water Nuclear Reactor, American Nuclear Society, Hinsdale, I11.
    [26]Saha, P. and Zuber, N., 1978, An Analytical study of the Thermally Induced Two-Phase Flow Instabilities Including the Effect of Thermal Nonequilibrium, Int. J. Heat Mass Transfer, Vol. 21, pp. 415-216.
    [27] “BWR Stability Analysis: Assessment of STAIF with
    Input from MICROBURN-B2”, EMF-CC-074(P)(A) ,Rev.0, 2000.
    [28] “STAIF:A Computer Progarm for BWR Stability Analysis in the Frequency Domain”, EMF-2279(P) ,Rev.0, 2001
    [29] Munoz-Cobo J. L., Verdu G.,Pereira C., Escriva A., Rodenas J., “Generacion de Parametros Cineticos 1D y Puntuales, a Partir de SIMULATE-3, para su utilizacion en TRAC/BF1”, Dpto. Ingenieria Quimica y Nuclear. UPV., 1994.
    [30]Munoz-Cobo J. L., Verdu G.,Pereira C., Escriva A., Rodenas J.,
    Castrillo F., Serra J., “Consistent Generation and Functionalization of One dimensional Cross Sections for TRAC/BF1”, Nuclear Technology, Vol. 107, 1994.
    [31] Borkowski J. A., Wade N. L., Rouhani S. Z., Shumway R. W.,
    Weaver W. L., Retting W. H., Kullberg C. L., “TRAC-BF1/MOD1 Models and Correlations”, NUREGCR4391, EGG-2680, August 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE