簡易檢索 / 詳目顯示

研究生: 廖世閎
論文名稱: PAHs化合物在黃金葛植物中分布特性之研究
指導教授: 洪益夫
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 64
中文關鍵詞: 黃金葛植物
外文關鍵詞: PAHs
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多環芳香性碳氫化合物(polycyclic aromatic hydrocarbons, PAHs)為有毒的環境有機污染物,部分PAHs有很強的致癌性和致突變性,且結構穩定容易長時間停留在環境中造成累積的情況。針對去除環境中PAHs的研究已經有廣泛的討論,其中利用植生整治(Phytoremediation)去除土壤、污水、底泥中的汙染物也有不少研究,該方法為了解植物吸收的特性來去除常見的有機污染物。本篇選用臺灣常見的觀葉植物黃金葛,針對其根部吸收PAHs的累積特性以及轉移機制研究,進而了解黃金葛對於特定PAHs有達到植生整治的效果,藉由植物根系作用,吸收污染物質,並運送至地面以上植株部位,以鏟除植被方式達到除污之目的。
    研究結果顯示Naphthalene在黃金葛植物根部中的濃度呈現不規則變化,而Fluorene有較弱的吸收累積,對於Phenanthrene 、Fluoranthene、Pyrene、和Benzo(g,h,i)perylene這四種PAHs有強烈的吸收累積。Phenanthrene 、Fluoranthene、Pyrene和Benzo(g,h,i)perylene這四種PAHs,皆有由根部轉移到莖部的現象,接著轉移到葉子的情況很不明顯,顯示PAHs在植物體中的轉移是受到限制的,綜合以上我們可以利用黃金葛根部強烈吸收以及轉移PAHs的特性來去除環境中的Phenanthrene 、Fluoranthene、Pyrene和Benzo(g,h,i)perylene這四種PAHs。
    利用根部吸附模型的理論計算和實驗數據做比對,發現到添加最高濃度的PAHs水溶液(solution at the beginning 500μg/L)實驗值遠高於理論值且偏離線性範圍,推測高濃度的PAHs水溶液有毒害黃金葛的現象造成植物根部的PAHs濃度偏高,也許黃金葛根部對於Phenanthrene 、Fluoranthene、Pyrene和Benzo(g,h,i)perylene這四種PAHs的各別最大負荷濃度不能超過7505±575,13551±909,13680±1025,12612±1042 μg /kg dry wt。


    摘要 -----------------------------------------------------------------------------Ⅰ 誌謝 -----------------------------------------------------------------------------Ⅲ 目錄 -----------------------------------------------------------------------------Ⅳ 圖目錄 --------------------------------------------------------------------------Ⅶ 表目錄 --------------------------------------------------------------------------Ⅸ 第一章 前言 ------------------------------------------------------------------1 第二章 文獻回顧 ------------------------------------------------------------4 2.1多環芳香性碳氫化合物(PAHs) -----------------------------------------4 2.2植物體內PAHs的來源 ---------------------------------------------------7 2.3植生整治 --------------------------------------------------------------------7 2.4 PAHs進入植物體內的機制 ----------------------------------------------9 2.5 PAHs在植物體內的轉移(Translocation)現象 -----------------------14 2.6植物體內PAHs濃度和脂質(lipid)的關係 ---------------------------15 2.7限制分配模型(partition-limited model)的探討 ---------------------16 第三章 實驗方法 -----------------------------------------------------------17 3.1實驗器材與實驗藥品 --------------------------------------------------- 17 3.1.1實驗器材 ----------------------------------------------------------------17 3.1.2實驗藥品 ----------------------------------------------------------------18 3.1.3儀器 ----------------------------------------------------------------------18 3.2標準品的配製和檢量線的建立 ---------------------------------------18 3.2.1標準溶液的配製 -------------------------------------------------------18 3.2.2 HPLC的參數設定和檢量線的建立 --------------------------------19 3.3實驗設計與樣品前處理 ------------------------------------------------ 27 3.3.1實驗植物與來源 -------------------------------------------------------27 3.3.2配製16-PAHs的水溶液 ----------------------------------------------27 3.3.3植物購買後的處理 ----------------------------------------------------27 3.3.4 植物樣品和16-PAHs水溶液中PAHs的濃度分析前處理 ------28 3.3.5.計算植物的脂質(lipid)含量 ----------------------------------------- 29 第四章 結果與討論 --------------------------------------------------------30 4.1黃金葛吸收16種PAHs的特徵濃度 ---------------------------------30 4.2比較PAHs的logKow值和植物的logR(S)CFs值 ----------------38 4.3添加PAHs濃度和植物體內PAHs濃度的關係 --------------------46 4.4植物根部PAHs濃度和PAHs溶液平衡濃度的關係 --------------52 4.5利用限制分配模型(partition-limited model)探討植物根部從水體中吸收有機污染物 ---------------------------------------------------------52 第五章 結論 ---------------------------------------------------------------- 57 第六章 參考文獻 -----------------------------------------------------------59

    1. C. J. Halsall, Coleman P. J, et al., 1994. "Polycyclic Aromatic Hydrocarbons in U.K Urban Air. " Environmental Science & Technology, 28, 2380-2386.

    2. J. Zheng, B. D. Hammock, 1996. " Development of polyclonal antibodies for detection of protein modification by 1,2-naphthoqunone."Chemical Research In Toxicology. 9, 904-909.

    3. United States Environmental Protection Agency , Office of Solid Waste Washington DC 20460 , 2008. " polycyclic aromatic hydrocarbons (PAHs). "

    4. 楊以仁,"多環芳香烴化合物在榕樹葉與榕樹氣根中累積特性之研究",國立清華大學生醫工程與環境科學研究所碩士論文,新竹,民國96年。

    5. B. Chen, X. Xuan, et al., 2004. " Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. " Water Research, 38, 3558-3568.

    6. H. Li, G. Sheng, 2005. " Relation of Organic Contaminant
    Equilibrium Sorption and Kinetic Uptake in Plants. " Environmental Science & Technology, 39, 4864-4870.

    7. A. Meudec, J. Dussauze, et al., 2006. " Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments. " Chemosphere, 65, 474–481.
    8. S. H. Lee, W. S. Lee, et al., 2008. " Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. " Journal of Hazardous Materials, 153, 892-898.

    9. C. Chiou, G. Sheng, et al., 2001. " A Partition-Limited Model for the Plant Uptake of Organic Contaminants from Soil and Water. " Environmental Science & Technology, 35, 1437-1444.

    10. C. Vanier, D. Planas, M. Sylvestre, 1999. "Empirical relationships between polychlorinated biphenyls in sediments and submerged rooted macrophytes. " Canadian Fishery and Aquatic Sciences, 56, 1792-1800.

    11. E. Wild, J. Dent, et al., 2005. " Direct Observation of Organic
    Contaminant Uptake, Storage, and Metabolism within Plant Roots ." Environmental Science & Technology, 39, 3695-3702.

    12. E. Wild, J. Dent, et al., 2006. " Visualizing the Air-To-Leaf Transfer and Within-Leaf Movement and Distribution of Phenanthrene: Further Studies Utilizing Two-Photon Excitation Microscopy. " Environmental Science & Technology, 40, 907-916.

    13. S. T. Simonich, R. A. Hites, 1995. " Organic pollutant accumulation in vegetation. EnViron. " Environmental Science & Technology, 9 (12), 2905-2913.

    14. F. Korte, G. Kvesitadze, D. Ugrekhelidze, et al., 2000. " Review: organic toxicants and plants. " Ecotoxicol Environment Safety, 47, 1-26.

    15. A. Hulster, J. F. Muller, et al., 1994. " Soil-Plant Transfer of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to Vegetables of the Cucumber Family (Cucurbitaceae) ." Environmental Science & Technology, 28, 1110-1115.

    16. G. G. Briggs, et al., 1982. "Relationships between lipophilicity and root uptake and translocation of nonionized chemicals by barley ." Pesticide Science, 13, 495-504.

    17. G. G. Briggs, et al., 1983. "Relationships between lipophilicity and the distribution of nonionized chemicals in barley shoots following uptake by the roots. " Pesticide Science, 14, 492-500.

    18. D. Lin, L. Zhu, et al., 2006. " Tea Plant Uptake and Translocation of Polycyclic Aromatic Hydrocarbons from Water and around Air." Journal of Agricultural and Food Chemistry, 54, 3658-3662.

    19. H. Lin, S. Tao, et al., 2006. " Uptake of polycyclic aromatic hydrocarbons by maize plants. " Environmental Pollution, 148, 614-619.

    20. S. L. Simonich, R. A. Hites, 1994. " Vegetation and atmosphere
    partitioning of polycyclic aromatic hydrocarbons. " Environmental Science & Technology, 28, 939-943.

    21. Y. Gao, W. Ling, 2006. " Comparison for plant uptake of phenanthrene and pyrene from soil and water. " Biology and Fertility of Soils, 42, 387–394.

    22. Y. H. Su, Y. G. Zhu, 2007. " Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. " Environmental Pollution, 148, 94-100.

    23. C. T. Chlou, 1985. " Partition Coefficients of Organic Compounds in Lipid-Water Systems and Correlations with Fish Bioconcentration Factors. " Environmental Science & Technology, 19, 57-62.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE