簡易檢索 / 詳目顯示

研究生: 陳敬□
Chen, Ching-Heng
論文名稱: 具微米間隙裝置之氣體電崩潰研究
STUDY OF ELECTRIC BREAKDOWN PHENOMENA FOR DEVICES WITH MICRON SEPARATIONS
指導教授: 王培仁
Wang, Pei-Jen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 137
中文關鍵詞: 氣體電崩潰微機電元件派斯欽定律
外文關鍵詞: Electrical breakdown, MEMS Devices, Paschen's Law
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微機電系統的研究熱潮,許多具實用性的產品應用領域已漸趨成熟,舉凡高解析度顯像裝置、多軸加速感知器、高密度資料儲存磁碟、噴墨列表機之噴墨頭及微流體控制裝置等,都可見於商品市場或經期刊文獻詳細討論。在眾多微機電裝置之驅動原理中,靜電力驅動是最常被採用的,藉由兩隔離電極經儲存電荷所產生的靜電力,微機電系統得以完成動作。本論文針對靜電力驅動之微機電元件,進行基礎電崩潰行為之研究與實驗驗證,並將電崩潰理論進行整理分析,後深入探討靜電驅動之微驅動元件電崩潰問題,藉由實驗規劃與靜電場崩潰理論,提出業界所需之設計準則,並佐以實驗數據驗證該準則。
    本論文先以派斯欽定律(Paschen’s Law)所揭露之介電崩潰為學理依據,探討氣體壓力及電極距離對崩潰電壓之影響,進而將金屬電極之電崩潰理論推廣至第四族半導體矽晶元及其滲雜晶元,採用習用之微細電極設計及製造技術,針對各電極設計參數進行實驗設計,再行規劃實驗設備及相關實驗技術,同時輔以電腦輔助靜電場分析進行表面粗造度之影響評估;經實驗數據證實於電極間隙為5 □m以下時,場發射效應已顯現於金屬電極間,且因表面粗造度易導致尖端電場集中,而終致崩潰電壓驟降,然矽電極出現相反之結果;故本文之結論提出微機電系統之靜電驅動元件電崩潰設計準則,並建立研究微間隙電崩潰現象之相關實驗驗證方法。


    As the research passion for micro-electromechanical systems (MEMS) continues, many devices have been unveiled in practical industrial applications such as high resolution projection displays, multi-axis accelerometers, high density data-storage disks, ink-jet printing heads, and micro-fluidic control devices. Most of them have been either commercialized or thoroughly reported in the literatures. Among the prominent actuation principles employed in MEMS device, electrostatic actuation has been the dominant method that relies on the forces generated between two conducting electrodes separated by appropriate dielectrics. In this dissertation, fundamental mechanisms for electric breakdown in dielectrics under micron separations have been explored and experimentally investigated. In addition, systematic analysis has been conducted on the basic design and fabrication of micro-electrodes for exploration of electrical breakdown to provide the design guidelines to the industry.
    In the study, the fundamental approach has been based upon the Paschen’s Law which states the essential parameters on gas pressure and distance of electrodes. For the MEMS applications, single-crystal silicon and impurity-doped silicon were chosen for serving as the basis of design and fabrication of micro-electrodes with various geometric shapes. Initially, experimental results have shown that when the surface roughness was negligible, field emission effects will gradually dominate the breakdown voltage when the gap is smaller than 5 micron on metal electrodes. On the contrary, the breakdown voltage will go higher when the gap is smaller than 5 micron on both pure and doped silicon-electrodes. Not until the surface roughness of the electrodes starts to pick up electric field concentration, the breakdown voltage gradually decrease in a linear manner as the gap shrinks. In conclusions, this study has proposed the design guidelines for electrostatic actuated MEMS devices as well as elucidated a consolidated experimental method for the study of electric breakdown of dielectric gases with micron separations.

    摘 要 ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS I LIST OF TABLES AND FIGURES III NOMENCLATURES AND NOTATIONS VIII CHAPTER 1 INTRODUCTION 1 1.1 MEMS Technology 2 1.2 Problem Descriptions 8 1.3 Objectives of Study 10 CHAPTER 2 LITERATURE REVIEWS 17 2.1 Applications Relevant to Electric Breakdown 18 2.1.1 Prevention of Breakdown 18 2.1.2 Control of Breakdown 22 2.2 Electrical Breakdown in Gas Dielectrics 24 2.2.1 Paschen’s Law 25 2.2.2 Modified Paschen’s Law 27 2.3 Concluding Remarks 34 CHAPTER 3 ELECTRICAL BREAKDOWN THEORY 44 3.1 Breakdown Mechanisms in Gas Discharge 45 3.1.1 Breakdown Processes 45 3.1.2 Townsend Breakdown Mechanism 47 3.1.3 Definition of Breakdown 49 3.2 Paschen’s Law 50 3.2.1 Derivation of Paschen’s Law 50 3.2.2 Limitations of Paschen’s Law 54 3.3 Theory of Field Emissions 55 3.3.1 Schottky Effects 55 3.3.2 Thermionic Emissions 57 3.3.3 Fowler and Nordheim Theory 58 3.3.4 Thermionic Field Emissions 65 3.3.5 Secondary Emissions 66 3.4 Breakdown under Vacuum 67 CHAPTER 4 DESIGN AND FABRICATION OF MICRO-ELECTRODES 75 4.1 Preliminary Numerical Simulations 76 4.4.1 Introduction of CAE Systems 76 4.4.2 Preliminary Simulations before Design 79 4.2 Specimen Requirements 81 4.3 MEMS Fabrication Processes 85 CHAPTER 5 EXPERIMENTAL VERIFICATIONS 99 5.1 Experimental Setup and Procedures 100 5.2 Breakdown Simulations 102 5.3 Results and Discussions 103 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 128 6.1 Conclusions 130 6.2 Future Works 132 REFERENCE 134

    References

    Boeuf, J. P., 2003, “Plasma Display Panels: Physics, Recent Developments and Key Issues”, J. Phys. D: Appl. Phys. 36, pp. 53-79.

    Boyle, W. S. and Kisliuk, P., 1955, “Departure from Paschen’s Law of Breakdown in Gases”, Phys. Rev., 97, pp. 255-259.

    Boyle, W. S., Kisliuk, P. and Germer L. H., 1955, “Electrical Breakdown in High Vacuum”, J. Appl. Phys., 26, pp. 720-725.

    Bustillo, J. M., Howe, R. T., and Muller, R. S., 1998, “Surface Micromachining for Microelectromechanical Systems”, Proc. IEEE, 86, No. 8, pp. 1552-1574.

    Cobine, J. D., 1958, Gaseous Conductors: Theory and Engineering Applications, Dover Publications, New York.

    Dakin, T. W., Luxa, G., Oppermann, G., Vigreux, J., Wind, G. and Winkelnkemper, H., 1974, “Breakdown of Gases in Uniform Fields, Paschen Curves for Nitrogen, Air and Sulfur Hexfluoride”, Electra, 32, pp. 61-82.

    Dhariwal, R. S., Torres, J. M. and Desmulliez, M. P. Y., 2000, “Electric Field Breakdown at Micrometre Separations in Air and Nitrogen at Atmospheric Pressure”, IEE Proc.- Sci., Measur. and Tech., 147, 5, pp. 261-265.

    Fan L. S., Tai, Y. C. and Muller, R. S, 1988, “IC-processed Electrostatic Micro-motors”, IEEE Int. Electron Dev. Meeting, San Francisco, Dec. 11-14, pp. 666-669.

    Germer, L. H., 1959, “Electrical Breakdown between Close Electrodes in Air”, J. Appl. Phys., 30, pp. 46-51.

    Gomer, R., 1993, Field Emission and Field Ionization, American Institute of Physics, New York, NY.

    Guerry, A., Gondran, C. F. H., and Miller, K., 2004, ''Sidewall Roughness Measurement: A comparison of In- and Off- AFM Techniques'', IEEE Adv. Semi. Manuf. Conf. and Workshop, May 4-6, pp. 221-226.

    Jaeckoin, V. P., Linder, C. and de Rooj, N. F., 1992, “Micromechanical Comb Actuators with Low Driving Voltage”, J. Micromech. Microeng., 2, pp.250-255.

    Jaeckoin, V. P., Linder, C. and de Rooj, N. F., 1994, “Line-addressable Torsional Micro-mirrors for Light Modulator Arrays”, Sensors and Actuators A, 41-42, pp. 324-329.

    Kisliuk, P., 1959, “Electron Emission at High Fields due to Positive Ions”, J. Appl. Phys., 30, pp. 51-55.

    Kraus, T., Baltzer, M. and Obermeier, E., 1997, “A Micro Shutter for Applications in Optical and Thermal Detectors”, Transducers 97, Int. Conf. on Solid-State Sensors and Actuators, Chicago IL, pp. 67-70.

    Lee, R. T., Chung H. H. and Chiou Y. C., 2001, “Arc Erosion Behavior of Silver Electric Contacts in a Single Arc Discharge Across a Static Gap,” IEE Proc-Sci. Meas. Technol., 148, 1, pp. 8.

    Lieberman, M. A. and Lichtenberg, A. J., 1994, Principles of Plasma Discharges and Materials Processing, Wiley Pub., New York, NY, pp. 279-283.

    Little, R. P. and Smith, S. T., 1965, “Field Enhancing Projections Produced by the Application of an Electric Field”, J. Appl. Phys., 36, pp. 1502-1504.

    Loeb, L. B., 1948, “Statistical Factors in Spark Discharge Mechanisms”, Rev. Mod. Phys., 20, 1, pp.151-160.

    Longwitz, R., Lintel, van H. and Renaud, P., 2003, “Study of Micro Glow Discharges as Ion Sources for Ion Mobility Spectrometry”, J. Vacuum Sci. and Tech., B, 21, 4, pp.1570-1573.

    Meek, J. M. and Craggs, J. D., 1953, Electrical Breakdown of Gases, Wiley Pub., New York, NY, pp. 214.

    Madou, M. J., 2002, Fundamentals of Microfabrication: the Science of Miniaturization, CRC Press, Boca Raton, FL, pp. 84-85.

    Madou, M. J., and Morrison S. R., 1991, “High-Field Operation of Submicrometer Devices at Atmospheric Pressure”, Transducers 91, Int. Conf. on Solid-State Sensors and Actuators, San Francisco CA, pp. 145-149.

    Mitsuharu, K., 1992, Film Deposition by Plasma Techniques, Springer-Verlag Inc.., New York, NY.

    Nasser, E., 1971, Fundamentals of Gaseous Ionization and Plasma Electronics, Wiley-Interscience Co., New York, NY, pp. 219-248.

    Neamen, D. A., 2003, Semiconductor Physics and Devices: Basic Principles, McGraw-Hill Book Co., New York, NY.

    Ono, T., Sim, D. Y. and Esashi, M., 2000, “Micro-discharge and Electric Breakdown in a Micro-gap”, J. Micromechanics and Microengineering, 10, pp.445-451.

    Paschen F., 1889, Wied. Ann., 37, pp. 69-96.

    Pierret, R. F., 1996, Semiconductor Device Fundamentals, Addison-Wesley Pub. Co., New York.

    Radmilovic-Radjenovic, M., Lee, J.K., Iza, F., Park, G.Y., 2005, “Particle-in-cell Simulation of Gas Breakdown in Microgaps,” J. Physics D: Applied Physics, 38, pp. 950-954.

    Raizer, Y. P., 1991, Gas Discharge Physics, Springer-Verlag Inc., New York, NY.

    Roth, J. R., 1995, Industrial Plasma Engineering, Institute of Physics Pub, Bristol, England.

    Schaffert, R. M., 1975, Electrophotography, Focal Press Co., London, pp. 516-517.

    Slade P. G., and Taylor E. D., 2002, “Electrical Breakdown in Atmospheric Air Between Closely Spaced Electrical Contacts,” IEEE Proc. Electron Control, pp. 245.

    Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E. R., 1976, “Physical Properties of Thin-film Field Emission Cathodes with Molybdenum Cones”, J. Appl. Phys., 47, 12, pp. 5248-5263.

    Tabib-Azzr, M., 1998, Microactuators, Kluwer Academic Publishers, Boston MA, pp. 38-39.

    Tai, Y. C., Fan, L. S., and Muller, R. S., 1989, “IC-processed Micro-motors: Design, Technology, and Testing”, Proc. IEEE Microelectromechanical Systems, Salt Lake City, Feb. 20-22, pp. 1-6.

    Tang, W. C., Nguyen, T. C. H., Howe, R. T., 1989, “Laterally Driven Polysilicon Resonant Microstructures”, Proc. of IEEE Microelectromechanical Systems, Salt Lake City, Feb. 20-22, pp. 53-59.

    Torres, J. M. and Dhariwal, R. S., 1999, “Electric Field Breakdown at Micro-meter Separations in Air and Vacuum”, Microsystem Technologies, 6, pp.6-10.

    Torres, J. M. and Dhariwal, R. S., 1999, “Electric Field Breakdown at Micrometer Separations”, J. Nanotechnology, 10, pp.102-107.

    Torres, J. M., Dhariwal, R. S. and King, P. C. 1999, “Electric Field Breakdown at Micrometer Separations in Various Media”, The 11th Int. Symp. on High Voltage Engineering, Aug. 23-27, 3, pp. 201-204.

    Van Kessel, P. F., Hornbeck, L. J., Meier, R. E. and Douglass, M. R., 1998, “A MEMS-based Projection Display”, Proc. IEEE, 86, 8, pp. 1687-1704.

    Wallash, A., and Levit, L., 2003, “Electrical Breakdown and ESD Phenomena for Devices with Nanometer-to-micron Gaps”, Proc. of SPIE, 4980, pp. 87-96.

    Wang, H. C. 2003, Micro Electro Mechanical SystemsTtechnology and Application, PIDC, HsinChu, pp. 210-225 (printed in Chinese).

    Wilson, C. G., Wendt, A. E. and Gianchandani, Y. B., 2003, “High Voltage Constraints for Vacuum Packaged Microstructures,” IEEE J. Microelectromechanical Sys., 12, 6, pp. 835-839.

    Xiong, J., Zhou, Z., Ye, X., Wang, X. and Feng, Y., 2003, ''Research on Electric Field and Electric Breakdown Problems of a Micro-colloid Thruster'', Sensors and Actuators A, 108, pp. 134-137.

    Zengerle, R., Ulrich, J., Kluge, S., Richter, M. and Richter, A., 1995, “A Bi-directional Silicon Micropump”, Sensors and Actuators A, 50, pp. 81-86.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE