簡易檢索 / 詳目顯示

研究生: 宋京瑾
Jing-Jin Song
論文名稱: Effects of capping layers on the properties of CoFeB
覆蓋層對鈷鐵硼性質之影響效應
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 86
中文關鍵詞: 鈷鐵硼阻尼係數覆蓋層
外文關鍵詞: CoFeB, damping constant, capping layer
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • To confront the limitation of development of field-switching devices in nanometer scale is inevitable. Spintronic devices with current-induced switching can solve the difficult of the field-switching devices, and then have attracted a lot of attention.
    In this study, we have focused on the capping effects on the CoFeB, which is the potential candidate of ferromagnet for the current-induced switching devices, including Gilbert damping constant and the magnetic properties of CoFeB. Gilbert damping is an important factor for the critical switching current density of spin-transfer devices. To investigate the dynamic behavior of CoFeB film, we have carried out the angle dependent FMR measurement and extracted the damping constant.
    Different capping layers of Ta, Cu, MgO inserted into the interface of the half MTJ structure with various heat treatment have brought about interesting effects on the CoFeB. We apply Vibrating Sample Magnetometer (VSM), Magneto-Optical Kerr Effect Meter (MOKE), and X-ray magnetic circular dichroism (XMCD) to analyze magnetic properties. In addition, we investigate the micro-structure and composition analysis by Transmission Electron Microscope (TEM) and secondary ion mass spectrometer (SIMS).
    Finally, we would get the lower damping constant at the case of Co60Fe20B20/MgO/Ta and it is also found that the capping effect is relative to the phase transition and interface oxidation.


    本論文致力於自旋傳輸記憶體中鈷鐵硼自由層阻尼係數之研究,並探討不同覆蓋層及退火處理對鈷鐵硼自由層磁性質與阻尼係數所造成之影響。除欲以降低阻尼係數來解決自旋穿隧電流過高的難題,更希望能分析出覆蓋層與鈷鐵硼自由層相變之間的關聯性。
    我們藉由電子自旋共振儀所量得的不同外加場夾角下之鐵磁共振訊號並配合數值上的計算,進而獲得鐵磁材料的阻尼係數值。初步得到自旋幫浦效應以及介面混合是額外造成阻尼係數增加的原因之一。此外,我們利用振動樣品測磁力計(VSM)、磁光柯爾效應儀(MOKE)等來分析磁性質,並利用穿透式電子顯微鏡(TEM)、二次離子質譜儀(SIMS)來進行成分以及微結構分析。
    最後,在雙氧化鎂阻絕層的結構中,我們調節上層氧化鎂厚度及退火處理溫度,來獲得相當低的阻尼係數,並歸納出上層覆蓋層對鈷鐵硼相變的引導作用對自由層的表現有莫大影響。

    Contents Abstract III Contents V Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Principles of Current-Induced Magnetization Switching 3 2.1.1 Introduction 3 2.1.2 Basic Concepts of Current-Induced Magnetization Switching 4 2.1.3 A model of CIMS 5 2.1.4 Reduction of CIMS switching current density 6 2.1.4.1 Single AlOx-based structure 6 2.1.4.2 Dual structure 7 2.1.4.3 Single MgO barrier 7 2.1.4.4 Dual MgO barrier 7 2.2 Characteristics of MgO-based TMR 8 2.2.1 Spin Dependent Tunneling 8 2.2.2 Materials of free layer of MgO-based MTJ 8 2.2.2.1 Fe 8 2.2.2.2 CoFe 9 2.2.2.3 Co 9 2.2.2.4 Amorphous CoFeSiB and NiFeSiB 11 2.2.2.5 Full-Heusler Alloy 12 2.3 Properties of amorphous CoFeB 14 2.3.1 Growth and Crystallization Processes 14 2.3.2 Annealing Effect vs. TMR 16 2.3.3 Chemical Composition vs. Microstructure 18 2.3.4 Chemical Composition vs. Magnetostriction 19 2.3.5 Chemical Composition vs. Gilbert Damping Constant 20 2.4 Gilbert damping 21 2.4.1 Introduction 21 2.4.2 Gilbert damping vs. flux rise time of write head fields 22 2.4.3 Damping constant in spin torque driven perpendicular MRAM 23 2.4.4 Influence of eddy currents on the effective damping parameter 25 2.4.5 Enhancement of the Gilbert damping due to spin pumping 26 2.5 Methods for extracting damping constant 26 2.5.1 Ferromagnetic Resonance 26 2.5.1.1 Out-of-plane FMR 27 2.5.1.2 Frequency dependent FMR 30 2.5.2 Ultrafast optical excitation/ pump-probe 31 2.5.3 Complex susceptibility measurement 32 2.6 Investigation of ferromagnetic resonance 33 2.6.1 Introduction 33 2.6.2 FMR in ultrathin ferromagnets 33 2.6.2.1 FMR in single ultrathin films 33 2.6.2.2 FMR in coupled ultrthin films 34 Chapter 3 Experimental and Analysis Technique 36 3.1 Experimental Flow Chart 36 3.2 Post Field-Annealing System 37 3.3 Vibrating Sample Magnetometer (VSM) 38 3.4 Magneto-Optical Kerr Effect Meter (MOKE) 39 3.5 Electron Paramagnetic Resonance (EPR) 41 3.6 Secondary Ion Mass Spectrometry (SIMS) 42 3.7 X-ray Magnetic Circular Dichroism (XMCD) 44 Chapter 4 Results and Discussion 45 4.1 Effects of different capping layers 45 4.1.1 Experimental Procedures 45 4.1.2 Magnetic Properties 46 4.1.3 Gilbert Damping Constant 48 4.1.4 Depth profile by SIMS 56 4.1.5 Magnetic properties from XMCD 59 4.2 The thickness-dependent effects of MgO capping 65 4.2.1 Introduction 65 4.2.2 Magnetic properties 65 (a) MgO<10Å 67 (b) MgO≧10Å 68 4.2.3 Effective demagnetization and perpendicular anisotropy 69 (a) MgO<10Å 69 (b) MgO≧10Å 71 4.2.4 g factor 72 (a) MgO<10Å 72 (b) MgO≧10Å 73 4.2.5 Damping constant vs. deviation of g-factor 74 (a) MgO<10Å 74 (b) MgO≧10Å 75 4.2.6 Damping constant 76 (a) Discontinuous MgO 76 (b) Transition between discontinuous and continuous 78 (c) Continuous MgO capping 78 (d) Extremely thick MgO capping 80 Chapter 5 Conclusions 81 References 83

    [1] Y. Huai et al., Jpn. J. Appl. Phys. 45, 3835-3841 (2006)
    [2] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)
    [3] L. Berger, Phys. Rev. B 54, 9353 (1996)
    [4] J. Z. Sun, Phys. Rev. B 62, 570 (2000)
    [5] D. M. Apalkov et al., Phys. Rev. B 72, 180405 (2005)
    [6] Z. Li et al., Phys. Rev. B 69, 134416 (2004)
    [7] E. B. Myers et al., Phys. Rev. Lett. 89, 196801 (2002)
    [8] Y. Huai et al., Appl. Phys. Lett. 84, 3118 (2004)
    [9] M. Pakala et al., J. Appl. Phys. 98, 056107 (2005)
    [10] Z. Diao et al., Appl. Phys. Lett. 87, 232502 (2005)
    [11] H. Kubota et al., Jpn. J. W. Appl. Phys. 44, L1237 (2005)
    [12] J. Hayakawa et al, Jpn. J. Appl. Phys. 44, L1267 (2005)
    [13] Y. Huai et al., Appl. Phys. Lett. 90, 132508 (2007)
    [14] W. H. Butler et al., Phys. Rev. B 63, 054416 (2001)
    [15] Y. Huai et al., IEEE Trans. Magn. 40, 2269 (2005)
    [16] Mathon, J., Phys. Rev. B 63, 220403 (2001)
    [17] S. Yuasa et al., Nat. Mater. 3, 868 (2004)
    [18] Stuart S. P. Parkin et al., Nat. Mater. 3, 862 (2004)
    [19] X.-G. Zhang et al., Phys. Rev. B 70, 172407 (2004)
    [20] S. Yuasa et al., Appl. Phys. Lett. 89, 042505 (2006)
    [21] E. C. Stoner et al., Philos Trans. R. Soc. Assoc. 240, 599 (1948)
    [22] F. E. Luborskv, Amorphous Metallic Alloys, Butterworths, London (1983)
    [23] R. C. O’Handley, Modern Magnetic Materials, Wiley, New York (2000)
    [24] Y. K. Kim, J. Magn. Magn. Mater. 304, 79-82 (2006)
    [25] Y. Miura et al., Phys. Rev. B 69, 144413 (2004)
    [26] P. J. Webster, J. Phys. Chem. Solid 32, 1221 (1971)
    [27] David D. Djayaprawira et al., Appl. Phys. Lett. 86, 092502 (2005)
    [28] Y. M. Lee et al., Appl. Phys. Lett. 89, 042506 (2005)
    [29] J. Y. Bae, J. Appl. Phys. 99, 08T316 (2006)
    [30] X.-G. Zhang et al., Phys. Rev. B 68, 092402 (2003)
    [31] J. Hayakawa et al., Appl. Phys. Lett. 89, 232510 (2006)
    [32] K. Tsunekawa et al., Jpn. J. W. Appl. Phys. 45, L1152 (2006)
    [33] S. Yuasa et al., Appl. Phys. Lett. 87, 242503 (2005)
    [34] K. Tsunekawa et al., IEEE Trans. Magn. 42, 103 (2006)
    [35] M. Oogane et al., Jpn. J. W. Appl. Phys. 45, 3889 (2006)
    [36] L. Landau et al., Phys. Z. Sowjetunion 8, 153 (1935)
    [37] K. Takano, IEEE Trans. Magn. 40, 257 (2004)
    [38] D. Suess et al., J. Magn. Magn. Mater. 290, 518-521 (2005)
    [39] J.-G. Zhu et al., IEEE Trans. Magn. 42, 2739-2742 (2006)
    [40] J. Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999)
    [41] J. Z. Sun, Phys. Rev. B 62, 570 (2000)
    [42] S. Mangin et al., Nature Mater. 5, 210 (2006)
    [43] J.-G. Zhu et al., IEEE Trans. Magn. 43, 2349 (2006)
    [44] S. Chikazumi, Physics of Ferromagnetism, Oxford Uni. Press, Oxford (1995)
    [45] Y. Shimizu et al., J. Appl. Phys. 81, 4513 (2000)
    [46] D. Suess et al., J. Appl. Phys. 99, 08B902 (2006)
    [47] H. Jaffres et al., Phys. Rev. B 67, 174402 (2003)
    [48] J. Z. Sun et al., Phys. Rev. Lett. 92, 088302 (2004)
    [49] H. Suhl, IEEE Trans. Magn. 34, 1834 (1998)
    [50] V. Kamberský, Can. J. Phys. 48 2906 (1970)
    [51] Y. Ando et al., J. Magn. Magn. Mater. 239, 42 (2002)
    [52] Y. Ando et al., Phys. Rev. B 66, 104413 (2002)
    [53] G. E. W. Bauer et al., Phys. Rev. Lett. 88, 117601 (2002)
    [54] G. E. W. Bauer et al., Phys. Rev. B 66, 224403 (2002)
    [55] T. Taniguchi et al., Phys. Rev. B 76, 092402 (2007)
    [56] Griffiths J-H-E, Nature 158, 670 (1946)
    [57] Kittel C, Phys. Rev. 71, 270 (1947)
    [58] B. Heinrich et al., Phys. Rev. Lett. 59, 1756 (1987)
    [59] S. Mizukami et al., Jpn. J. W. Appl. Phys. 40, 580-585 (2006)
    [60] H. Shul, Phys. Rev. 97, 555 (1955)
    [61] C. Chappert K, Phys. Rev. B 34, 3192 (1986)
    [62] D. L. Mills et al., Phys. Rev. B 68, 060102 (2003)
    [63] Y. Ando et al., J. Appl. Phys. 101, 09C106 (2007)
    [64] P.C. Fannin et al., J. Magn. Magn. Mater. 299, 425-429 (2006)
    [65] Kittel C, Phys. Rev. 73, 155 (1947)
    [66] Farle M, Rep. Prog. Phys. 61, 755 (1998)
    [67] Buchmeier M et al., J. Phys.: Condens. Matter 15, S443 (2003)
    [68] Y. Ando et al., Jpn. J. Appl. Phys. 40, 580-585 (2001)
    [69] J Lindner et al., J. Phys.: Condens. Matter 15, S465 (2003)
    [70] J. C. Read et al., Appl. Phys. Lett. 90, 132503 (2007)
    [71] D. J. Kim et al., J. Appl. Phys. 101, 09B505 (2007)
    [72] James W. et al., J. Electron. Spectrose. Relat. Phenom. 130, 97-100 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE