研究生: |
田浩倫 Hao-Luen Tain |
---|---|
論文名稱: |
應用切換式電源供應器之新式智慧型功率晶片 A new intelligent power chip for switched mode power supply |
指導教授: |
徐清祥
Charles Ching-Hsiang Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 智慧型功率晶片 、功率晶片 、智慧型功率元件模組 、功率元件模組 、自我啟動 |
外文關鍵詞: | intelligent power chip, power chip, intelligent power device module, power device module, self powering |
相關次數: | 點閱:80 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
切換式電源供應器具有高轉換效率、小體積及能乘載較大範圍之功率密度等優點,故一直為目前工業界較為廣泛採用的設計模式,而功率晶片在其電路之中更是扮演了重要且不可缺少的角色。但目前做為切換開關之功率晶片的主要功用除了可耐高電壓與承載高電流,均較少有配備其他的功能。所以如何將周邊電路的功用整合至功率晶片之中,成為當前產學界開發的重要課題之一。本論文即是基於此目標提出新式的智慧型功率晶片,而設計此元件模組的目的,是希望在標準之垂直式雙擴散金氧半電晶體的製作流程下,製作出具有能耐高壓與乘載高電流之基本高功率開關特性並可提供切換式電源供應器之控制積體電路(Control IC)的啟動電源,且同時具有監控直流輸出、過流保護及過壓保護等功能之元件模組。論文中將闡述此智慧型功率晶片的觀念,並逐步描述其設計方法與流程。故在論文內容中,第一章先簡述本論文的研究動機與方向,第二章將一些與元件及電路相關之論文作一回顧,第三章介紹元件模組中各元件的結構與其操作原理,第四章將包含了本元件模組的製作流程、各元件與整體模組之模擬結果,並詳述根據其模擬結果所做的佈局設計,另外元件模組之高功率量測架構與積體電路之量測架構會列在第五章之內容當中,第六章則會詳述其量測結果並作更進一步之分析與討論,最後,第七章將對本論文之研究內容作一完整結論。
[1] H. W. Whittington, B. W. Flynn, and D. E. Macpherson, ”Switched Mode Power Supplies”, Copyright 1997, by Research Studies Press Ltd..
[2] 張天錫,書名”電力電子學”,台灣東華書局股份有限公司於1999年再版
[3] 鄒應嶼,”交換式電源供應器ABC”1999年短期課程教材
[4] R. A. Keller, P. Alto, and Calif, “Switching Regulator Power Supply”, 1977, United States Patent 4037271.
[5] J. D. Sartre, and E. Gelger, “Power Control Circuit and a Switching Mode Power Supply Employing this Circuit”, 1980, United States Patent 4228293.
[6] K. Inou, and K. Sakimoto, “DC Power Supply with Improved Output Stabilizing Feedback”, 1989, United States Patent 4862339.
[7] B. Balakrishnan, Saratoga, and Calif, “Three Terminal Switched Mode Power Supply Integrated Circuit”, 1994, United States Patent 5313381.
[8] B. Balakrishnan, Saratoga, and Calif, “Self Powering Technique for Integrated Switched Mode Power Supply”, 1991, United States Patent 5014178.
[9] K. H. Eklund, L. Gatos, and Calif, ”High Voltage MOS Transistor”, 1989, Untied State Patent 4811075.
[10] M. S. Alder, King W. Owyang, B. J. Baliga, and R. A. Kokosa, “The Evolution of Power Device Technology”, IEEE Trans. Electron Device, vol. ED-31, PP. 1570-1591, Nov. 1984.
[11] C. A. T. Salama, “V-groove Power Field Effect Transistors”, International Electron Devices Meeting pp. 412-415, 1977.
[12] A. Lidow, T.Herman, and H. W. Collins, “Power MOSFET Technology”, International Electron Devices Meeting pp. 79-83 1979.
[13] Temple, and P. V. Gray, “Theoretical Comparison of DMOS and VMOS Structures for Voltage and On-Resistance”, International Electron Devices Meeting pp. 88-92 1979.
[14] T. Syau, P. Venkatraman, and B. J. Baliga, “Electronics Letters, vol. 28, pp. 865-867(1992).
[15] S. C. Sun, and J. D. Plummer, “Modeling of the On-Resistance of LDMOS, VDMOS, and VMOS Power Transistors”, IEEE Trans. Electron Device, vol. ED-27, No. 2, pp. 356-367, Feb. 1980.
[16] P. L. Hower, T. M. S. Heng, and C. Huang, “Optimum Design of Power MOSFETs”, International Electron Devices Meeting PP. 87-90, 1983.
[17] K. Board, D. J. Byrne, and M. S. Towers, “The Optimization of On-Resistance in Vertical DMOS Power Devices with Linear and Hexaginal Surface Geometries”, IEEE Trans. Electron Device, vol. ED-31, No. 1, pp. 75-80, Jan. 1984.
[18] C. H. Hu, M. H. Chi, and V. M. Patel, “Optimum Design of Power MOSFET’s”, IEEE Trans. Electron Device, vol. ED-31, No. 12, pp. 1693-1716, Dec. 1984.
[19] B. J. Baliga, “Modern Power Devices”, Copyright 1987 by John Wiley & Sons. Inc.
[20] B. J. Baliga, “Power Semiconductor Devices”, Copyright 1996 by PWS Publishing Company, a division of International Thomson Publishing Inc.
[21] B. J. Baliga, B. Tech., and M.S., ”High-voltage device termination techniques a comparative revirw”, IEE Proc., vol. 129, Pt. I, No. 5, Oct. 1982.
[22] M. N. Darwish, “Study of the Quasi-Saturation Effect in VDMOS Transistors”, IEEE Trans. Electron Device, vol. ED-33, No. 11, pp. 1710-1716, Nov. 1986.
[23] J. Paredes, S. Hidalgo, F. Berta, J Fernández, J. Rebollo, and J. Millán, “A Steady-State VDMOS Transistor Model”, IEEE Trans. Electron Device, vol. ED-39, No. 3, pp. 712-719, Mar. 1992.
[24] D. A. Grant, and J. Gowar, “Power MOSFETS: Theory and Applications”, copyright 1989 by John Wiley & Sons, Inc.
[25] R. H. Zhu, and T. P. Chow, “The Effect of DMOS Cell Geometry on the Integrated Current Sensors of High-voltage Power MOSFETS”, Proceeding of 8th ISPSD, pp. 189-192, 1996.
[26] G. F. Neumark, and E. S. Ritter, “Transition from Pentode- to Triode-like Characteristics in Field Effect Transistors”, Solid State Electronics, vol. 10, pp. 299-304, 1967.
[27] J. I. Nishizawa, T. Terasaki, and J. Shibata, “Field-Effect Transistor Versus Analog Transistor (Static Induction Transistor)”, IEEE Trans. Electron Device, vol. ED-22, No. 4, pp. 185-197, Apr. 1975.
[28] K. Yamaguchi, Y. Toyabe, and H. Kodera, “Two-Dimensional Analysis of Triode-Like Operation of Junction Gate FET’s”, IEEE Trans. Electron Device, vol. ED-22, No. 11, pp. 1047-1049, Nov. 1975.
[29] B. J. Baliga, ”A Power Junction Gate Field-Effect Transistor Structure with High Blocking Gain”, IEEE Trans. Electron Device, vol. ED-27, No. 2, pp. 368-373, Feb. 1980.