簡易檢索 / 詳目顯示

研究生: 江宗殷
Tzung-Yin Chiang
論文名稱: 溫度補償CMOS電壓參考電路
Temperature-compensated CMOS voltage reference circuit
指導教授: 周懷樸
Hwai-Pwu Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 溫度補償電壓參考電路溫度係數電源雜訊排斥比
外文關鍵詞: temperature-compensated, voltage reference circuit, temperature coefficient, power noise rejection ratio
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 參考電路至今已被研究多年,隨著可攜式電子產品蓬勃發展,低電壓與小面積的積體電路成了目前研究重心。一般參考電路係利用BJT設計以得到穩定的溫度補償輸出。但為了達到更小面積與較低供應電壓,近年來已有不少文獻探討MOS參考電路。然而不管使用BJT或MOS,在考慮功率消耗或運算放大器負載寄生電容及抵補電壓效應下,並聯在它們旁邊的電阻會佔整個晶片面積相當大比例。除此之外,來自供應電壓的雜訊沒辦法完全被排斥,且在高頻應用下,可能耦合至電路衰減輸出訊號。
    本研究主要針對上述問題,提出一個新穎的CMOS電壓參考電路,它採用電流鏡作為溫度補償,並且避免使用大電阻以減少晶片面積。設計電路已使用台積電標準0.18 μm CMOS製程實現,後模擬結果在溫度範圍-40 ~ 100 ℃與供應電壓從1.2 ~ 1.98 V變化下,溫度係數變動範圍59.5 ~ 63.8 ppm/℃。在供應電壓1.2 V且頻率10 kHz時,供應電壓與雜訊排斥比為-70 dB。總括來說,本論文採用電流鏡得到低溫度飄移參考電壓,間接避免使用大電阻帶來設計上問題,且供應電壓與雜訊排斥比也有不錯表現。


    Reference circuits have been studying for many years. Following the vigorous development of portable electronic products, integrated circuits with low voltage and small area have become the core part of the recent research. Parasitic vertical bipolar junction transistors are commonly used in CMOS voltage reference circuits for a better stability. Recently, MOS reference circuits have been used to replace BJT ones in order to reduce the chip area and supply voltage. Whether BJT or MOS is utilized, the problem that resistances parallelizing on either side of BJT or MOS generally occupy quite large ratio of chip area under the consideration of power consumption and loading parasitic capacitances of op-amp still exists. Another problem worthy of our concern is that spurious signals coming from the supply voltage cannot be adequately rejected and may couple into the circuit to degrade output signal in high frequency applications.
    This thesis aims to improve the above problems and proposes a novel voltage reference circuit. A current mirror is designed for temperature compensation and large resistors are defeasible for reduction chip area. Besides, it has been implemented by a 0.18 μm CMOS process with a chip area of 0.023 mm2. Simulation shows that the variation of temperature coefficient is from 59.5 to 63.8 ppm/℃ under the temperature range from -40 to 100 ℃ and a supply voltage variation from 1.2 to 1.98 V. The power noise rejection ratio is -70 dB at 10 kHz with 1.2V supply voltage. In summary, the thesis adopts a current mirror to achieve low-temperature-drift reference voltage and abandons large resistances on design consideration. With this approach, power noise rejection ration is reduced.

    誌謝 I Abstract II 摘要 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 參考電路簡介 1 1-2 研究動機及目的 3 第二章 文獻回顧 4 2-1 使用BJT構成之參考電路 4 2-1.1 未經電流鏡輸出之BJT帶差參考電路 5 2-1.2 電流鏡輸出之BJT帶差參考電路 10 2-2 使用MOS構成之參考電路 13 2-2.1 臨界電壓與遷移率互補之MOS參考電路 13 2-2.2 次臨界區操作之MOS參考電路 16 2-3 BJT與MOS參考電路之特性比較 18 第三章 電路設計 20 3-1 架構簡介 21 3-1.1 設計考量 21 3-1.2 規格設定 23 3-2 正溫度係數電流參考電路 24 3-2.1 運算放大器 26 3-2.2 偏壓電路 27 3-3 負溫度係數電流參考電路 28 3-4 電流補償電路 29 3-4.1 電流鏡設計考量 29 3-4.2 高擺幅疊接電流鏡 31 3-4.3 Sackinger電流鏡 32 3-5 完整電路分析 33 3-6 啟始電路 35 第四章 電路模擬及分析 37 4-1 正溫度係數電路之模擬 37 4-1.1 元件選擇考量 38 4-1.2 正TC電路模擬結果 40 4-2 負溫度係數電路之模擬 42 4-3 完整電路之模擬 43 4-3.1 使用理想op-amp模擬結果 43 4-3.2 使用實際op-amp模擬結果 45 4-3.3 加上啟始電路模擬結果 49 第五章 電路佈局與量測之規劃 52 5-1 運算放大器之佈局 52 5-2 整體電路之佈局 56 5-2.1 電阻佈局規劃 56 5-2.2 整體電路佈局規劃 57 5-3 整體電路之後模擬 59 5-4 量測方法與環境之規劃 63 第六章 結論與建議 65 參考文獻 67

    [1] M. Sodagar and K. Najafi, “A multi-output supply-independent voltage reference in standard CMOS process for telemetry-powering applications,” International Symposium on Signals, Circuits and Systems, vol. 2, pp. 493-496, July 2003.
    [2] J. Doyle, Y. J. Lee, Yong-Bin Kim, H. Wilsch, and F. Lombardi, “A CMOS subbandgap reference circuit with 1-V power supply voltage,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 252-255, Jan. 2004.
    [3] D. Hilbiber, “A new semiconductor voltage standard,” IEEE International Solid-State Circuits Conference, vol. VII, pp.32-33, Feb. 1964.
    [4] R. Widlar, “New developments in IC voltage regulators,” IEEE International Solid-State Circuits Conference, vol. XIII, pp. 158-159, Feb. 1970.
    [5] K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, pp. 222-226, June 1973.
    [6] D. A. Johns and K. Martin, “Analog integrated circuit design,” 1st ed. New York: Wiley & Sons, 1997.
    [7] K. N. Leung, P. K. T. Mok, and C. Y. Leung, “A 2-V 23-μA 5.3-ppm/℃ curvature-compensated CMOS bandgap voltage reference,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 561-564, Mar. 2003.
    [8] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 526-530, Apr. 2002.
    [9] R. Dehghani and S. M. Atarodi, “A new low voltage precision CMOS current reference with no external components,” IEEE Transactions on Circuits and Systems, vol. 50, pp. 928-932, Dec. 2003.
    [10] M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Transactions on Circuits and Systems, vol. 48, pp. 876-884, Jul. 2001.
    [11] K. N. Leung and P. K. T. Mok, “A CMOS voltage reference based on weighted △VGS for CMOS low-dropout linear regulators,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 146-150, Jan. 2003.
    [12] Y. Dai, D. T. Comer, D. J. Comer, and C. S. Petrie, “Threshold voltage based CMOS voltage reference,” IEE Proceedings of Circuits, Devices and Systems, vol. 151, pp. 58-62, 5 Feb. 2004.
    [13] T. Grotjohn and B. Hoefflinger, “A parametric short-channel MOS transistor model for subthreshold and strong inversion current,” IEEE Journal of Solid-State Circuits, vol. 19, pp. 100-112, Feb. 1984.
    [14] M. S. Kim et al., “Optical subthreshold current method for extracting the interface states in MOS systems,” IEEE Trans. Electron Device Letters, vol. 25, no. 2, pp. 101-103, Feb. 2004.
    [15] Y. Hu and M. Sawan, “A 900 mV 25 μW high PSRR CMOS voltage reference dedicated to implantable micro-devices,” Proceedings of the 2003 International Symposium on Circuits and Systems, vol. 1, pp. 373-376, 25-28 May 2003.
    [16] T. Ytterdal, “CMOS bandgap voltage reference circuit for supply voltages down to 0.6 V,” Electronics Letters, vol. 39, pp. 1427-1428, 2 Oct. 2003.
    [17] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits,” 4th ed. New York: Wiley & Sons, 2001.
    [18] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design,” 2nd ed. New York: Oxford, 2002.
    [19] E. Bruun and P. Shah, “Dynamic range of low-voltage cascode current mirrors,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1328-1331, 28 April-3 May 1995.
    [20] E. Sackinger and W. Guggenbuhl, “A high-swing, high-impedance MOS cascode circuit,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 289-298, Feb. 1990.
    [21] M. Ozbas, D. Patru, and P. R. Mukund, “Power supply noise coupling in a standard voltage reference circuit,” in Proc. IEEE Int. Conf. Systems-on-Chip, pp. 319-322, Sept. 2003.
    [22] A. Hastings, “The art of analog layout,” 2nd ed. New Jersey: Prentice-Hall, 2001.
    [23] U. Gatti, F. Maloberti and V. Liberali, “Full stacked layout of analogue cells,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1123-1126, May 1989.
    [24] E. Malavasi, D. Pandini and V. Liberali, “Optimum stacked layout for analog CMOS ICs,” in Proc. IEEE Int. Conf. Custom Integrated Circuits, pp. 17.1.1-17.1.4, May 1993.
    [25] J. Bruce, H. Li and M. Dallabetta, “An analog layout assistant for matched and balanced CMOS components,” Proceedings of the Eighth Annual IEEE International ASIC Conference and Exhibit, pp. 267-270, Sept. 1995.
    [26] K. W. Cheng, “A 1.0-V, 10-Bit CMOS Pipelined Analog-to-Digital Converter,” M.S. thesis, National Taiwan University, Jun. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE