研究生: |
王翊華 Wang, I-Hua |
---|---|
論文名稱: |
白藜蘆醇對衰老細胞的粒線體動態平衡調控之探討 The Effects of Resveratrol on Mitochondrial Dynamics in Senescent Cells |
指導教授: |
張壯榮
Chang, Chuang-Rung |
口試委員: |
莊永仁
Yung-Jen Chuang 孫德芬 Der-Fen Suen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 粒線體 、粒線體動態平衡 、細胞衰老 、白藜蘆醇 |
外文關鍵詞: | mitochondria, mitochondrial dynamics, senescent, resveratrol |
相關次數: | 點閱:118 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
粒線體是一個動態胞器,不停地進行融合與分裂,這個過程又稱為粒線體動態平衡。在細胞中,粒線體最主要的功能是藉由呼吸作用來提供能量;除此之外,還參與了許多的代謝與訊息傳遞的調控。先前研究指出,老化、疾病與粒線體功能異常有關,且粒線體會藉由融合與分裂來維持其正常的功能。在我們先前的研究中發現,老化的酵母菌其粒線體呈現較破碎的型態,並且會藉由提升粒線體功能來維持正常的細胞功能。而在酵母菌及線蟲的生物研究中發現,白藜蘆醇可提高粒線體的活性來延長壽命並且延緩老化的發生。我的實驗針對白藜蘆醇在老化的酵母菌中的作用進行研究。我們發現在老化的酵母菌細胞中加入白藜蘆醇可以減少衰老細胞族群中帶有破碎狀粒線體的比例,更進一步發現白藜蘆醇會改變衰老細胞中粒線體融合與分裂的基因表現、粒線體DNA的總量,以及提高氧氣的消耗量。我們的解果顯示白藜蘆醇在老化的細胞中會改變粒線體融合與分裂的平衡,並且進一步提升粒線體的功能。
Mitochondria are important organelles that play key roles in cellular functions, such as energy production, oxidative stress responses and programmed cell death. Proper mitochondria dynamics fission/fusion processes are critical for regulating their shape, size and integrity. The cellular activity declines gradually during the senescence process. Previous studies in our lab demonstrated that mitochondria not only become fragmented by shifting dynamic balance toward fission, but also alter their activity in replicative senescent yeast cells. Resveratrol is known to be an effective antioxidant and be able to extend lifespan by boosting mitochondria biogenesis and activity. However, the effects of resveratrol on mitochondria dynamics in replicative senescent yeast cells remain to be explored. We applied biotin-streptavidin labeling method to isolate resveratrol-treated senescent cells to clarify related issues. Our results demonstrated that treatment of resveratrol can reduce mitochondria fragmentation in replicative senescent yeast cells and increase fusion and fission gene expression levels. Furthermore, resveratrol increased mtDNA and enhanced the oxygen consumption. Our finding indicated that resveratrol possesses the ability to adjust the fusion and fission balance of mitochondria and further facilitates mitochondrial functions in senescent yeast cells.
References
Acta Facultatis Rerum Naturalium Universitatis Comenianae: AnthropologiaAlirol, E., and Martinou, J.C. (2006). Mitochondria and Cancer: Is There a Morphological Connection? Oncogene 25, 4706-4716.
Bass, T.M., Weinkove, D., Houthoofd, K., Gems, D., and Partridge, L. (2007). Effects of Resveratrol on Lifespan in Drosophila Melanogaster and Caenorhabditis Elegans. Mech Ageing Dev 128, 546-552.
Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol Improves Health and Survival of Mice on a High-Calorie Diet. Nature 444, 337-342.
Bess, A.S., Crocker, T.L., Ryde, I.T., and Meyer, J.N. (2012). Mitochondrial Dynamics and Autophagy Aid in Removal of Persistent Mitochondrial DNA Damage in Caenorhabditis Elegans. Nucleic Acids Res 40, 7916-7931.
Brooks, C., Wei, Q., Feng, L., Dong, G., Tao, Y., Mei, L., Xie, Z.J., and Dong, Z. (2007). Bak Regulates Mitochondrial Morphology and Pathology During Apoptosis by Interacting with Mitofusins. Proc Natl Acad Sci U S A 104, 11649-11654.
Bryk, M., Briggs, S.D., Strahl, B.D., Curcio, M.J., Allis, C.D., and Winston, F. (2002). Evidence That Set1, a Factor Required for Methylation of Histone H3, Regulates Rdna Silencing in S. Cerevisiae by a Sir2-Independent Mechanism. Curr Biol 12, 165-170.
Burtner, C.R., Murakami, C.J., Kennedy, B.K., and Kaeberlein, M. (2009). A Molecular Mechanism of Chronological Aging in Yeast. Cell Cycle 8, 1256-1270.
Cantos, E., Garcia-Viguera, C., de Pascual-Teresa, S., and Tomas-Barberan, F.A. (2000). Effect of Postharvest Ultraviolet Irradiation on Resveratrol and Other Phenolics of Cv. Napoleon Table Grapes. J Agric Food Chem 48, 4606-4612.
Chan, M.M. (2002). Antimicrobial Effect of Resveratrol on Dermatophytes and Bacterial Pathogens of the Skin. Biochem Pharmacol 63, 99-104.
Chen, H., and Chan, D.C. (2005). Emerging Functions of Mammalian Mitochondrial Fusion and Fission. Hum Mol Genet 14 Spec No. 2, R283-289.
Chen, H., and Chan, D.C. (2010). Physiological Functions of Mitochondrial Fusion. Ann N Y Acad Sci 1201, 21-25.
Chen, J.H., Hales, C.N., and Ozanne, S.E. (2007). DNA Damage, Cellular Senescence and Organismal Ageing: Causal or Correlative? Nucleic Acids Res 35, 7417-7428.
Csiszar, A., Labinskyy, N., Pinto, J.T., Ballabh, P., Zhang, H., Losonczy, G., Pearson, K., de Cabo, R., Pacher, P., Zhang, C., et al. (2009). Resveratrol Induces Mitochondrial Biogenesis in Endothelial Cells. Am J Physiol Heart Circ Physiol 297, H13-20.
Desagher, S., and Martinou, J.C. (2000). Mitochondria as the Central Control Point of Apoptosis. Trends Cell Biol 10, 369-377.
Desquiret-Dumas, V., Gueguen, N., Leman, G., Baron, S., Nivet-Antoine, V., Chupin, S., Chevrollier, A., Vessieres, E., Ayer, A., Ferre, M., et al. (2013). Resveratrol Induces a Mitochondrial Complex I-Dependent Increase in Nadh Oxidation Responsible for Sirtuin Activation in Liver Cells. J Biol Chem 288, 36662-36675.
Detmer, S.A., and Chan, D.C. (2007). Functions and Dysfunctions of Mitochondrial Dynamics. Nat Rev Mol Cell Biol 8, 870-879.
Fabrizio, P., and Longo, V.D. (2003). The Chronological Life Span of Saccharomyces Cerevisiae. Aging Cell 2, 73-81.
Ferree, A., and Shirihai, O. (2012). Mitochondrial Dynamics: The Intersection of Form and Function. Adv Exp Med Biol 748, 13-40.
Frank, M., Duvezin-Caubet, S., Koob, S., Occhipinti, A., Jagasia, R., Petcherski, A., Ruonala, M.O., Priault, M., Salin, B., and Reichert, A.S. (2012). Mitophagy Is Triggered by Mild Oxidative Stress in a Mitochondrial Fission Dependent Manner. Biochim Biophys Acta 1823, 2297-2310.
Gershon, H., and Gershon, D. (2000). The Budding Yeast, Saccharomyces Cerevisiae, as a Model for Aging Research: A Critical Review. Mech Ageing Dev 120, 1-22.
Guarente, L. (2000). Sir2 Links Chromatin Silencing, Metabolism, and Aging. Genes Dev 14, 1021-1026.
Harman, D. (1981). The Aging Process. Proc Natl Acad Sci U S A 78, 7124-7128.
Henze, K., and Martin, W. (2003). Evolutionary Biology: Essence of Mitochondria. Nature 426, 127-128.
Herzig, S., and Martinou, J.C. (2008). Mitochondrial Dynamics: To Be in Good Shape to Survive. Curr Mol Med 8, 131-137.
Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small Molecule Activators of Sirtuins Extend Saccharomyces Cerevisiae Lifespan. Nature 425, 191-196.
Jensen, R.E., Hobbs, A.E., Cerveny, K.L., and Sesaki, H. (2000). Yeast Mitochondrial Dynamics: Fusion, Division, Segregation, and Shape. Microsc Res Tech 51, 573-583.
Kaeberlein, M. (2010). Lessons on Longevity from Budding Yeast. Nature 464, 513-519.
Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2004). Sir2-Independent Life Span Extension by Calorie Restriction in Yeast. PLoS Biol 2, E296.
Kaeberlein, M., and Powers, R.W., 3rd (2007). Sir2 and Calorie Restriction in Yeast: A Skeptical Perspective. Ageing Res Rev 6, 128-140.
Kennedy, B.K., Austriaco, N.R., Jr., and Guarente, L. (1994). Daughter Cells of Saccharomyces Cerevisiae from Old Mothers Display a Reduced Life Span. J Cell Biol 127, 1985-1993.
Knott, A.B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008). Mitochondrial Fragmentation in Neurodegeneration. Nat Rev Neurosci 9, 505-518.
Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating Sirt1 and Pgc-1alpha. Cell 127, 1109-1122.
Lee-Chang, C., Bodogai, M., Martin-Montalvo, A., Wejksza, K., Sanghvi, M., Moaddel, R., de Cabo, R., and Biragyn, A. (2013). Inhibition of Breast Cancer Metastasis by Resveratrol-Mediated Inactivation of Tumor-Evoked Regulatory B Cells. J Immunol 191, 4141-4151.
Lee, Y., Lee, H.Y., Hanna, R.A., and Gustafsson, A.B. (2011). Mitochondrial Autophagy by Bnip3 Involves Drp1-Mediated Mitochondrial Fission and Recruitment of Parkin in Cardiac Myocytes. Am J Physiol Heart Circ Physiol 301, H1924-1931.
Legros, F., Lombes, A., Frachon, P., and Rojo, M. (2002). Mitochondrial Fusion in Human Cells Is Efficient, Requires the Inner Membrane Potential, and Is Mediated by Mitofusins. Mol Biol Cell 13, 4343-4354.
Leonard, S.S., Xia, C., Jiang, B.H., Stinefelt, B., Klandorf, H., Harris, G.K., and Shi, X. (2003). Resveratrol Scavenges Reactive Oxygen Species and Effects Radical-Induced Cellular Responses. Biochem Biophys Res Commun 309, 1017-1026.
Liang, F., Kume, S., and Koya, D. (2009). Sirt1 and Insulin Resistance. Nat Rev Endocrinol 5, 367-373.
Liesa, M., Palacin, M., and Zorzano, A. (2009). Mitochondrial Dynamics in Mammalian Health and Disease. Physiol Rev 89, 799-845.
Lin, S.J., Defossez, P.A., and Guarente, L. (2000). Requirement of Nad and Sir2 for Life-Span Extension by Calorie Restriction in Saccharomyces Cerevisiae. Science 289, 2126-2128.
Lin, X., Wu, G., Huo, W.Q., Zhang, Y., and Jin, F.S. (2012). Resveratrol Induces Apoptosis Associated with Mitochondrial Dysfunction in Bladder Carcinoma Cells. Int J Urol 19, 757-764.
Longo, V.D., Shadel, G.S., Kaeberlein, M., and Kennedy, B. (2012). Replicative and Chronological Aging in Saccharomyces Cerevisiae. Cell Metab 16, 18-31.
Mannella, C.A. (1986). Mitochondrial Outer Membrane Channel (Vdac, Porin) Two-Dimensional Crystals from Neurospora. Methods Enzymol 125, 595-610.
Mannella, C.A. (2006). Structure and Dynamics of the Mitochondrial Inner Membrane Cristae. Biochim Biophys Acta 1763, 542-548.
Medvedik, O., Lamming, D.W., Kim, K.D., and Sinclair, D.A. (2007). Msn2 and Msn4 Link Calorie Restriction and Tor to Sirtuin-Mediated Lifespan Extension in Saccharomyces Cerevisiae. PLoS Biol 5, e261.
Morselli, E., Maiuri, M.C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S.A., Vitale, I., et al. (2010). Caloric Restriction and Resveratrol Promote Longevity through the Sirtuin-1-Dependent Induction of Autophagy. Cell Death Dis 1, e10.
North, B.J., and Verdin, E. (2004). Sirtuins: Sir2-Related Nad-Dependent Protein Deacetylases. Genome Biol 5, 224.
Okamoto, K., and Shaw, J.M. (2005). Mitochondrial Morphology and Dynamics in Yeast and Multicellular Eukaryotes. Annu Rev Genet 39, 503-536.
Otsuga, D., Keegan, B.R., Brisch, E., Thatcher, J.W., Hermann, G.J., Bleazard, W., and Shaw, J.M. (1998). The Dynamin-Related Gtpase, Dnm1p, Controls Mitochondrial Morphology in Yeast. J Cell Biol 143, 333-349.
P. Langcake, R.J.P. (1976). The Production of Resveratrol by Vitis Vinifera and Other Members of the Vitaceae as a Response to Infection or Injury. Physiological Plant Pathology 9, 77–86.
Palade, G.E. (1953). An Electron Microscope Study of the Mitochondrial Structure. J Histochem Cytochem 1, 188-211.
Rapaport, D., Brunner, M., Neupert, W., and Westermann, B. (1998). Fzo1p Is a Mitochondrial Outer Membrane Protein Essential for the Biogenesis of Functional Mitochondria in Saccharomyces Cerevisiae. J Biol Chem 273, 20150-20155.
Rogina, B., and Helfand, S.L. (2004). Sir2 Mediates Longevity in the Fly through a Pathway Related to Calorie Restriction. Proc Natl Acad Sci U S A 101, 15998-16003.
Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and Aging. Cell 146, 682-695.
Sareen, D., van Ginkel, P.R., Takach, J.C., Mohiuddin, A., Darjatmoko, S.R., Albert, D.M., and Polans, A.S. (2006). Mitochondria as the Primary Target of Resveratrol-Induced Apoptosis in Human Retinoblastoma Cells. Invest Ophthalmol Vis Sci 47, 3708-3716.
Sesaki, H., and Jensen, R.E. (1999). Division Versus Fusion: Dnm1p and Fzo1p Antagonistically Regulate Mitochondrial Shape. J Cell Biol 147, 699-706.
Shin, S.M., Cho, I.J., and Kim, S.G. (2009). Resveratrol Protects Mitochondria against Oxidative Stress through Amp-Activated Protein Kinase-Mediated Glycogen Synthase Kinase-3beta Inhibition Downstream of Poly(Adp-Ribose)Polymerase-Lkb1 Pathway. Mol Pharmacol 76, 884-895.
Steinkraus, K.A., Kaeberlein, M., and Kennedy, B.K. (2008). Replicative Aging in Yeast: The Means to the End. Annu Rev Cell Dev Biol 24, 29-54.
Sun, W., Wang, W., Kim, J., Keng, P., Yang, S., Zhang, H., Liu, C., Okunieff, P., and Zhang, L. (2008). Anti-Cancer Effect of Resveratrol Is Associated with Induction of Apoptosis Via a Mitochondrial Pathway Alignment. Adv Exp Med Biol 614, 179-186.
Surh, Y.J., Hurh, Y.J., Kang, J.Y., Lee, E., Kong, G., and Lee, S.J. (1999). Resveratrol, an Antioxidant Present in Red Wine, Induces Apoptosis in Human Promyelocytic Leukemia (Hl-60) Cells. Cancer Lett 140, 1-10.
Twig, G., and Shirihai, O.S. (2011). The Interplay between Mitochondrial Dynamics and Mitophagy. Antioxid Redox Signal 14, 1939-1951.
Villegas, C.A.d.l.L.a. (2005). Resveratrol as an Anti-Inflammatory and Anti-Aging Agent: Mechanisms and Clinical Implications. Molecular Nutrition & Food Research 49, 405–430.
Wallace, D.C. (2005). A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annu Rev Genet 39, 359-407.
Wasiak, S., Zunino, R., and McBride, H.M. (2007). Bax/Bak Promote Sumoylation of Drp1 and Its Stable Association with Mitochondria During Apoptotic Cell Death. J Cell Biol 177, 439-450.
Wolter, F., Akoglu, B., Clausnitzer, A., and Stein, J. (2001). Downregulation of the Cyclin D1/Cdk4 Complex Occurs During Resveratrol-Induced Cell Cycle Arrest in Colon Cancer Cell Lines. J Nutr 131, 2197-2203.
Wong, E.D., Wagner, J.A., Gorsich, S.W., McCaffery, J.M., Shaw, J.M., and Nunnari, J. (2000). The Dynamin-Related Gtpase, Mgm1p, Is an Intermembrane Space Protein Required for Maintenance of Fusion Competent Mitochondria. J Cell Biol 151, 341-352.
Zhang, J., Vaga, S., Chumnanpuen, P., Kumar, R., Vemuri, G.N., Aebersold, R., and Nielsen, J. (2011). Mapping the Interaction of Snf1 with Torc1 in Saccharomyces Cerevisiae. Mol Syst Biol 7, 545.
Zhang, Y., and Chan, D.C. (2007). Structural Basis for Recruitment of Mitochondrial Fission Complexes by Fis1. Proc Natl Acad Sci U S A 104, 18526-18530.