簡易檢索 / 詳目顯示

研究生: 余明道
Ming-Dow Yu
論文名稱: 應用相關時序差異的時鐘樹緩衝器尺吋設計
Clock Tree Buffer Sizing with Applying Connective Skew
指導教授: 張世杰
Shih-Chieh Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 38
中文關鍵詞: 時鐘樹時序差異緩衝器尺吋設計
外文關鍵詞: clock tree, clock skew, buffer sizing
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的晶片設計中,時鐘的設計扮演了很重要的角色。在時鐘網路的設計中,目前最普遍採用在現今晶片設計的是緩衝器式時鐘樹。在本篇論文中,因為,傳統上,時序差異的定義太過於悲觀,所以,我們提出了一個新的時序差異的概念,相關的時序差異。此外,我們提出了兩種緩衝器尺吋設計的演算法來應用相關的時序差異,分別是基因演算法和梯度搜尋演算法。實驗結果顯示,梯度搜尋演算法可以快速找出一組不錯的解,很適合當作基因演算法的初始解,以增快基因演算法最佳化的速度。最後,我們將提出之相關時序差異的概念和兩種緩衝器尺吋設計的演算法加入現有的設計流程中。而我們最佳化的目標是將現有設計工具產生之實際電路的時鐘樹加入相關時序差異的概念,並且利用緩衝器尺吋設計演算法來作時鐘樹功率消耗最佳化。實驗結果顯示,五種實際的電路採用相關時序差異後經由最佳化,平均可以降低約百分之十的時鐘樹功率消耗。


    Clock designs play an important role in modern VLSI designs. Among clock network designs, the buffered clock tree architecture is the most popular clock network design adopted in modern VLSI designs. In this thesis, we have proposed a new skew concept, connective skew. Since, the traditional clock skew definition is too pessimistic. Moreover, we have proposed two buffer sizing algorithm, genetic algorithm and gradient search algorithm with applying connective skew. The experimental results show that gradient search algorithm can be a good initial solution for genetic algorithm. Finally, we have incorporated our algorithms with the current cell-based design flow. Our optimization goal is to apply the connective skew to clock tree such that the power consumption of the circuit will be minimized under the same skew constraint. From experimental results, applying connective skew to clock tree buffer sizing program can achieve about 10% of power minimization than applying traditional clock skew. In summary, we can reduce the power consumption of real circuits’ clock tree by integrating our proposed clock tree buffer sizing approach into current cell-based design flow.

    ABSTRACT I CONTENTS II LIST OF FIGURES III LIST OF TABLES IV CHAPTER 1 INTRODUCTION 1 CHAPTER 2 PREVIOUS WORK 5 2.1. CLOCK SKEW MINIMIZATION 5 2.2. CLOCK SKEW UTILIZATION 6 CHAPTER 3 PROPOSED APPROACH 8 3.1 CONNECTIVE SKEW 8 3.2 CLOCK TREE BUFFER SIZING ALGORITHM 12 3.2.1 Genetic Algorithm 12 3.2.2 Gradient Search Algorithm 15 3.3 CLOCK TREE BUFFER SIZING FOR POWER OPTIMIZATION 17 3.3.1 Clock Tree Buffer Sizing Flow 17 3.3.2 Delay and Clock Power Calculation 20 CHAPTER 4 EXPERIMENTAL RESULTS 24 4.1 BENCHMARK PROFILES 24 4.2 CONNECTIVE SKEW VS. CLOCK SKEW 25 4.3 GRADIENT SEARCH ALGORITHM VS. GENETIC ALGORITHM 28 4.4 GRADIENT SEARCH ALGORITHM + GENETIC ALGORITHM VS. GENETIC ALGORITHM 30 CHAPTER 5 CONCLUSIONS 33 BENCHMARK STUDY 35 A.1 MEAN FILTER 35 A.2 GRAVITY CENTER CALCULATOR 35 A.3 32/64 BIT MAC (MULTIPLIER AND ACCUMULATOR) 35 A.4 H.26L MOTION ESTIMATOR 36 BIBLIOGRAPHY 37

    [1] H. Bakoglu, J.T. Walker, and J.D. Meindl, “A Symmetric Clock Distribution Tree and Optimized High-Speed Interconnections for Reduced Clock Skew in ULSI and WSI Circuits,” Proc. of IEEE International Conference on Computer Design, pp. 118-122, 1986.
    [2] M.A.B. Jackson, A. Srivasan, and E.S. Kuh, “Clock Routing for High-Performance ICs,” Proc. of ACM/IEEE Design Automation Conference, pp. 573-579, 1990.
    [3] R.S. Tsay, “Exact Zero Skew,” Proc. of IEEE International Conference on Computer-Aided Design, pp. 336-339, 1991.
    [4] T.H. Chao, Y.C. Hsu, J.M. Ho, K.D. Boese, and A.B. Kahng, “Zero Skew Clock Routing with Minimum Wirelength,” IEEE Trans. On Circuits and Systems – II: Analog and Digital Signal Processing, Volume 39, pp. 779-814, 1992.
    [5] T.H. Chao, Y.C. Hsu, and J.M. Ho, “Zero Skew Clock Net Routing,” Proc. of ACM/IEEE Design Automation Conference, pp. 518-523, 1992.
    [6] K.D. Boese and A.B. Kahng, “Zero-Skew Clock Routing Trees with Minimum Wirelength,” Proc. of IEEE International Conference on ASIC, pp.1.1.1-1.1.5, 1992.
    [7] Ashish D. Mehta, Yao-Ping Chen, Noel Menezes, D.F. Wong, and Lawrence T. Pileggi, “Clustering and Load Balancing for Buffered Clock Tree Synthesis,” Proc. of IEEE International Conference on Computer Design, pp. 217-223, 1997.
    [8] J.P. Fishburn, “Clock Skew Optimizaiton,” IEEE Trans. Computers, Volume 39, pp. 945-951, 1990.
    [9] J.L. Neves and E.G. Friedman, “Optimal Clock Skew Scheduling Tolerant to Process Variations,” Proc. of ACM/IEEE Design Automation Conference, 1996, pp. 623-628.
    [10] J.L. Neves and E.G. Friedman, “Topological Design of Clock Distribution Networks Based on Non-Zero Clock Skew Specification,” Proc. of Midwest Symposium on Circuits and Systems, 1993, pp. 468-471.
    [11] J.L. Neves and E.G. Friedman, “Design Methodology for Synthesizing Clock Distribution Networks Exploiting Nonzero Localized Clock Skew,” IEEE Trans. On VLSI Systems, Volume 4, 1996, pp. 286-291.
    [12] O. Coudert, “Gate Sizing: a General Purpose Optimization Approach,” Proc. of ED&TC’96, 1996.
    [13] E.G. Friedman, “Clock Distribution Networks in Synchronous Digital Integrated Circuits,” Proc of the IEEE, Volume 89, NO. 5, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE