研究生: |
廖雪兒 Suet-Yi Liu |
---|---|
論文名稱: |
利用步進式霍氏紅外光譜法研究酚於193 nm光解所產生一氧化碳之內能分佈 |
指導教授: |
儲三陽
San-Yan Chu 李遠鵬 Yuan-Pern Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 步進式霍氏紅外光譜法 、酚 |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
吾人利用步進式掃瞄時域解析-霍氏轉換紅外光譜放光技術,研究C6H5OH分子於193 nm之光解動態學。藉由觀測CO的振轉動放光譜線,以分析光解產物CO的內能分佈。C6H5OH經193 nm激發後躍遷至高電子激發態,再經由內轉移至基態位能面而進行三中心分解途徑產生CO。
C6H5OH經193 nm雷射光解後,可觀測到產物CO之最高振動態達υ<4,轉動態達J<70的振-轉動解析放光光譜,從所得的光譜可推算出CO的平均轉動能量為28.6 ± 3 kJ mol-1,佔可用能量frot = 0.054 ± 0.005;平均振動能量為12.7 ± 3 kJ mol-1,佔可用能量fvib = 0.024 ± 0.006。利用外插法可得CO的初生態平均轉動溫度為4520 ± 70 K、初生態平均轉動能量為31.0 ± 3.0 kJ mole-1,以及CO (υ = 0-4)之振動態佈居數相對百分比,分別為63.6%,24.0%,8.1%,3.2%,1.2%。
另外,利用GAUSSIAN 03程式以G2M方法所得到C6H5OH之反應位能圖,並根據RRKM理論,發現C6H5OH經TS14過渡態產生CO之解離途徑為可能的主要反應途徑。同時以改良衝擊模式所預測CO之轉動能,與實驗所得之結果接近。
第一章
1. R. Cyprès, B. Bettens, Tetrahedron 30, 1253 (1974).
2. A. B. Lovell, K. Brezinsky, I. Glassman, Int. J. Chem. Kinet. 21, 547 (1989).
3. J. A. Manion, R. Louw, J. Phys. Chem. 93, 3563 (1989).
4. C. Horn, K. Roy, P. Frank, Th. Just, Symp. (Int.) Combust., [Proc.], 321 (1998).
5. Creed D., Photochem. Photobiol. 39, 537 (1984).
6. G. Grabner, G. Köhler, J. Zechner, N. Getoff, Photochem. Photobiol. 26, 449 (1977).
7. A. Sur, P. M. Johnson, J. Chem. Phys. 84, 1206 (1986).
8. A. Bussandri, H. van Willigen, J. Phys. Chem. A 106, 1524 (2002).
9. T. S. Zwier, Annu. Rev. Phys. Chem. 47, 205 (1966).
10. N. Mikami, Bull. Chem. Soc. Jpn. 68, 683 (1995).
11. K. Kleinermanns, M. Gerhards, M. Schmitt, Ber. Bunsen-Ges. Phys. Chem. 101, 1785 (1997).
12. J. A. Z. Syage, Phys. D 30, 1 (1994).
13. G. Pino, G. Gregoire, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, D. Solgadi, Phys. Chem. Chem. Phys. 2, 893 (2000).
14. C. M. Tseng, Y. T. Lee, C. K. Ni, J. Chem. Phys. 121, 2459, (2004).
15. A. L. Sobolewski, W. Domcke, J. Phys. Chem. A 105, 9275 (2001).
16. A. L. Sobolewski, W. Domcke, C. Dedonder-Lardeux, C. Jouvet, Phys. Chem. Chem. Phys. 4, 1093 (2002).
17. Xu, Z. F.; Lin, M. C., J. Chem. Phys. A, 110, 1672, (2006).
18. S. R. Lin, S. C. Lin, Y. C. Lee, Y. C. Chou, I. C. Chen, and Y. P. Lee, J. Chem. Phys. 114, 160 (2001).
19. S. R. Lin, S. C. Lin, Y. C. Lee, Y. C. Chou, I. C. Chen, and Y. P. Lee, J. Chem. Phys. 114, 7396 (2001).
20. C. Y. Wu, C. Y. Chung, Y. C. Lee, and Y. P. Lee, J. Chem. Phys. 117, 9785 (2002).
21. C. Y. Wu, Y. J. Wu, and Y. P. Lee, J. Chem. Phys. 121, 8792 (2004).
22. S. K. Yang, S. Y. Liu, H. F. Chen, and Y. P. Lee, J. Chem. Phys. 123, 224304 (2005).
第二章
1. A. A. Michelson, Phil. Mag. Ser. 5, 256 (1891).
2. P. Fellgett, J. Phys. Radium 19, 187 (1958).
3. P. Jacquinot, Rep. Prog. Phys. 23, 267 (1960).
4. http://bbs.sachina.pku.edu.cn/Stat/Math_World/math/a/a279.htm
5. L. Mertz, Transformations in Optics, Wiley, New York (1965).
6. L. Mertz, Infrared Phys. 7, 17 (1967).
7. Ting Xing, Opt. Eng. 39, 393 (2000).
8. J. Connes, and P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
9. P. R. Griffith and J. A. de Haseth, in Fourier Transform Infrared Spectroscopy, (1986).
10. D. J. Donaldson and J. J. Sloan, J. Chem. Phys. 82, 1873 (1985).
11. E. Arunan, G. Manke Ⅱ, and D. W. Setser, Chem. Phys. Lett. 207, 81 (1993).
12. N. I. Butkovskaya, and D. W. Seter, J. Chem. Phys. 106, 5028 (1996).
13. N. I. Butkovskaya, and D. W. Setser, J. Phys. Chem. 102, 9715 (1998).
14. E. L. Woodbridge, T. R. Fletcher, and S. R. Leone, J. Phys. Chem. 92, 5387 (1988).
15. P. W. Seakins and S. R. Leone, J. Phys. Chem. 96, 4478 (1992).
16. P. W. Seakins, E. L. Woodbridge and S. R. Leone, J. Phys. Chem. 97, 5633 (1993).
17. K. Matsutani, A. Yokota, and M. Tasumi, Appl. Spectrosc. 46, 560 (1992).
18. D. E. Heard, D. G. Weston, and G. Hancock, Appl. Spectrosc. 47, 1438 (1993).
19. G. V. Hartland, D. Qin, and H-L. Dai, A. Simon and M. J. Anderson, Rev. Sci. Instrum. 63, 3261 (1992).
20. G. V. Hartland, W. Xie, and H-L. Dai, J. Chem. Phys. 100, 7832 (1994).
21. R. A. Palmer, C. J. Manning, and J. L. Chao, Appl. Spectrosc. 43, 193 (1989).
第三章
1. H. L. Welsh, C. Cumming, E. J. Stansbury, J. Opt. Soc. Am. 41, 712 (1951).
2. H. L. Welsh, E. J. Stansbury, J. Romanko, T. Feldman, J. Opt. Soc. Am. 45, 338 (1955).
3. J. D. Simmons, Arnold M. Bass, S. G. Tilford, Astrophysical J. 155, 345 (1969).
4. J. F. Ogilvie, S.-L. Cheah, Y.-P. Lee, S. P. A. Sauer, Theoret. Chem. Acc. 108, 85, (2002).
5. J. F. Ogilvie, The Vibrational and Rotational Spectrometry of Diatomic Molecules, Academic Press, London, 1998.
6. 林孝瑞,國立清華大學博士論文,民國八十九年,第109頁。
7. 吳佳燕,國立清華大學博士論文,民國九十三年,第53頁。
第四章
1. Martynoff M., Bull. Soc. Chim. Fr. 16, 258, (1949).
2. Z. F. Xu, M. C. Lin, J. Chem. Phys. A 110, 1672, (2006).
3. Castellucci, Manzelli, Fortunato, Gallinella, Mirone, Spectrochimica Acta. 31A, 451, (1975).
4. J. Spanget-Larsen, M. Gil, A. Gorski, D. M. Blake, J. Waluk, J. G. Radziszewski, J. Am. Chem. Soc. 123, 11253 (2001).
5. J. G. Radziszewski, B. A. Hess, Jr., R. Zahradnikt, J. Am. Chem. Soc. 114, 52, (1992).
6. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, vol 1, NSRDS NBS-39.
7. http://webbook.nist.gov/chemistry/form-ser.html.
8. J. F. Ogilvie, S.-L. Cheah, Y.-P. Lee, S. P. A. Sauer, Theoret. Chem. Acc. 85, 108, (2002).
9. Customer Service Department, MicroMath Scientific Software, P.O. Box 21550, Salt Lake City, UT 84121-0550.
10. J. I. Steinfeld, J. S. Francisco, and W. L. Hase, Chemical Kinetics and Dynamics, Second Edition (Prentice Hall international, Inc., 1999).
11. D. H. Mordaunt, D. L. Osborn, D. M. Neumark, J. Chem. Phys. 108, 2448, (1998).
12. G. E. Busch, K. R. Wilson, J. Chem. Phys. 56, 3626, (1972).
13. P. R. Bunker, J. Mol. Spectrosc. 35, 306 (1970).
14. G. Herzberg, Molecular Spectra and Molecular Structure, vol I. Spectra of Diatomic Molecles, 2 nd Ed. (Van Vostrand Reinhold, New York, 1965), pp. 122.