簡易檢索 / 詳目顯示

研究生: 蕭景倫
Hsiao, Ching-Lun
論文名稱: Catalyst-Free Growth of ZnO Nanowires and Its Application for Dye-Sensitized Solar Cells
無催化劑成長氧化鋅奈米線及其於染料敏化太陽能電池之應用
指導教授: 林鶴南
Lin, Heh-Nan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 73
中文關鍵詞: 氧化鋅染料敏化太陽能電池
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In recent years, much attention has been paid to the development of dye-sensitized solar cells (DSCs) because of their low production cost. In this study, growth of well-aligned single-crystalline ZnO nanowires (NWs) is realized on bare transparent conductive oxide (TCO) glass substrates by one-step thermal evaporation. The highest obtained roughness factor, conversion efficiency and fill factor are around 20, 1.33% and 0.52, respectively. When compared with the reported values from the ZnO photoanodes fabricated via low-temperature process, the achieved fill factor of 0.52 stands relatively high due to the superior crystallinity and the better electron transport pathway of the nanowires fabricated by the high temperature process. With further improvement on the roughness factor, it is foreseeable that the conversion efficiency can be improved by our lately synthesized ultra-long ZnO NWs (around 80 □m in length) and may reach a useful level.


    誌謝 1 摘要 2 Abstract 3 Table of Contents 4 List of Figures 7 List of Tables 10 Chapter 1 : Introduction 11 1.1 Category of Solar Cells 11 1.1.1 Silicon Solar Cells 11 1.1.2 Thin Film Solar Cells 12 1.1.3 Dye-Sensitized Solar Cells 15 1.2 Nanostructured Semiconductors as Photoanodes of DSCs 18 1.3 Motivation 20 Chapter 2 : Photovoltaic Technology 22 2.1 Basics of Solar Energy Conversion 22 2.1.1 Photovoltaic Cell Performance 22 2.1.2 Parasitic Resistance 23 2.2 Dye-Sensitized Solar Cells 26 2.2.1 Operation Principle of DSCs 26 2.2.2 Light Absorption 30 2.2.3 Charge Separation 31 2.2.4 Electron Transport in the Semiconductor Anode 32 2.2.5 Ion Transport in the Redox Electrolyte 33 2.2.6 Interfacial Kinetics 34 Chapter 3 : Literature Review on NW Growth and ZnO Photoanodes 36 3.1 Vapor-Liquid-Solid and Vapor-Solid Growths of NWs 36 3.1.1 Catalyst-Assisted Vapor-Liquid-Solid (VLS) Mechanism 36 3.1.2 Vapor-Solid (VS) Mechanism 38 3.1.3 Catalyst-Free Surface-Roughness-Assisted Growth 39 3.2.1 ZnO NWs as Photoanodes of DSCs 43 3.2.2 ZnO Nanoflowers as Photoanodes of DSCs 45 3.2.3 ZnO-TiO2 Core-Shell as Photoanodes of DSCs 46 3.2.4 Branched ZnO NWs as Photoanodes of DSCs 48 Chapter 4 : Experimental Procedures and Instruments 50 4.1 Experimental Instruments 50 4.2 Experimental Procedures 53 4.2.1 Growth of ZnO NWs on TCO Substrates 53 4.2.2 Assembling Process of DSCs 54 4.2.3 Efficiency Measurement for DSCs 55 Chapter 5 : Results and Discussion 57 5.1 SEM Analysis of ZnO NWs 57 5.2 AFM Analysis of TCO Glass Substrates 59 5.3 TEM Analysis of ZnO NWs 62 5.4 Effect of Dye Immersion Time 63 5.5 Calculation of Roughness Factors 65 5.6 Efficiency Measurement of DSCs 66 Chapter 6 : Conclusions 70 6.1 Summary 70 6.2 Future Works 71 References 72

    [1] J. Nelson, The Physics of Solar Cells, Imperial College Press;
    Distributed by World Scientific Pub. Co., London River Edge, NJ 2003.
    [2] K. E. Martin A. Green, Yoshihiro Hishikawa, Wilhelm Warta, Prog. Photovoltaics Res. Appl. 2009, 17, 85.
    [3] B. O'Regan, M. Gätzel, Nature 1991, 353, 737.
    [4] M. Gätzel, Nature 2001, 414, 338.
    [5] 王釿鋊, 中技社通訊 2002, 41, 5.
    [6] M. Gätzel, Inorg. Chem. 2005, 44, 6841.
    [7] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gätzel, J. Am. Chem. Soc. 2005, 127, 16835.
    [8] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 2002, 73, 51.
    [9] P. Guo, M. A. Aegerter, Thin Solid Films 1999, 351, 290.
    [10] C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw, D. L. Kwong, Appl. Phys. Lett. 2008, 92, 143101.
    [11] Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue, Cryst. Growth Des. 2007, 7, 2467.
    [12] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455.
    [13] A. D. Pasquier, H. Chen, Y. Lu, Appl. Phys. Lett. 2006, 89, 253513.
    [14] A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, Nano Lett. 2007, 7, 2183.
    [15] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 2006, 110, 16159.
    [16] M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 2006, 110, 22652.
    [17] S.-T. Ho, K.-C. Chen, H.-A. Chen, H.-Y. Lin, C.-Y. Cheng, H.-N. Lin, Chem. Mater. 2007, 19, 4083.
    [18] E. M. Kaidashev, M. Lorenz, H. v. Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 2003, 82, 3901.
    [19] E. A. L. Th. Dittrich, J. Weidmann, Phys. Status Solidi A 1998, 165, R5.
    [20] A. Djuriscaroni, cacute, Y. H. L. , Small 2006, 2, 944.
    [21] H. Chen, A. D. Pasquier, G. Saraf, J. Zhong, Y. Lu, Semicond. Sci. Technol. 2008, 23, 045004.
    [22] A. C. Jones, S. A. Rushworth, J. Auld, "Recent Development in Metalorganic Precursors for Metalorganic Chemical-Vapor-Deposition", 1995.
    [23] S. Muthukumar, S. Haifeng, Z. Jian, Z. Zheng, N. W. Emanetoglu, L. Yicheng, IEEE Transactions on Nanotechnology 2003, 2, 50.
    [24] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, H. Shen, J. Appl. Phys. 1999, 85, 2595.
    [25] Y. Liu, C. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, J. Electron. Mater. 2000, 29, 69.
    [26] A. R. Rao, V. Dutta, Nanotechnology 2008, 19, 9.
    [27] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, W. K. Ge, J. Phys. Chem. B 2006, 110, 20865.
    [28] T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, J. Phys. Chem. B 2004, 108, 2227.
    [29] J. Qiu, X. Li, W. He, S.-J. Park, H.-K. Kim, Y.-H. Hwang, J.-H. Lee, Y.-D. Kim, Nanotechnology 2009, 20, 155603.
    [30] M. Guo, P. Diao, S. Cai, Appl. Surf. Sci. 2005, 249, 71.
    [31] M. Guo, P. Diao, S. M. Cai, Acta Chim. Sin. 2003, 61, 1165.
    [32] G. F. Zou, H. Li, Y. G. Zhang, K. Xiong, Y. T. Qian, Nanotechnology 2006, 17, S313.
    [33] Y. F. Hsu, Y. Y. Xi, A. B. Djurisic, W. K. Chan, Appl. Phys. Lett. 2008, 92, 133507.
    [34] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
    [35] L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, R. Yamanaka, Appl. Phys. Lett. 2005, 86, 213501.
    [36] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gätzel, J. Phys. Chem. B 2003, 107, 8981.
    [37] A. Hagfeldt, M. Gätzel, Acc. Chem. Res. 2000, 33, 269.
    [38] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218.
    [39] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, M. Gätzel, Adv. Mater. 2006, 18, 1202.
    [40] P. D. Yang, C. M. Lieber, J. Mater. Res. 1997, 12, 2981.
    [41] S.-T. Ho, C.-Y. Wang, H.-L. Liu, H.-N. Lin, Chem. Phys. Lett. 2008, 463, 141.
    [42] J. B. Baxter, E. S. Aydil, Sol. Energy Mater. Sol. Cells 2006, 90, 607.
    [43] J.-J. Wu, G.-R. Chen, H.-H. Yang, C.-H. Ku, J.-Y. Lai, Appl. Phys. Lett. 2007, 90, 213109.
    [44] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Nano Lett. 2007, 7, 1793.
    [45] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, Appl. Phys. Lett. 2007, 90, 263501.
    [46] H.-M. Cheng, W.-H. Chiu, C.-H. Lee, S.-Y. Tsai, W.-F. Hsieh, J. Phys. Chem. C 2008, 112, 16359.
    [47] K. Keis, J. Lindgren, S.-E. Lindquist, A. Hagfeldt, Langmuir 2000, 16, 4688.
    [48] R. Zhang, J. Pan, E. P. Briggs, M. Thrash, L. L. Kerr, Sol. Energy Mater. Sol. Cells 2008, 92, 425.
    [49] T. P. Chou, Q. F. Zhang, G. Z. Cao, J. Phys. Chem. C 2007, 111, 18804.
    [50] I.-D. Kim, J.-M. Hong, B. H. Lee, D. Y. Kim, E.-K. Jeon, D.-K. Choi, D.-J. Yang, Appl. Phys. Lett. 2007, 91, 163109.
    [51] M. Matsui, A. Ito, M. Kotani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Minoura, H. Miura, Dyes Pigment. 2009, 80, 233.
    [52] K.-C. Lee, S.-J. Lin, C.-H. Lin, C.-S. Tsai, Y.-J. Lu, Surf. Coat. Technol. 2008, 202, 5339.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE