簡易檢索 / 詳目顯示

研究生: 方宇誠
Fang, Yu-Cheng
論文名稱: 反式結構下有機太陽能電池模組之效率提升以及穩定性的改善
Efficiency Enhancement and Stability Improvement of Inverted Organic Solar Cell Modules
指導教授: 洪勝富
HORNG, SHENG-FU
口試委員: 孟心飛
Hsin-Fei Meng
趙宇強
Yu-Chiang Chao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 73
中文關鍵詞: 有機太陽能電池反式結構刮刀塗佈C60鈍化層C60/PCBM雙層鈍化層
外文關鍵詞: Organic Photovoltaics, Inverted Structure, Blade Coating, C60 Passivation, C60/PCBM Bilayer
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對有機太陽能電池(Organic Photovoltaics, OPV)模組於中面積製程下的效能與穩定性提升進行深入探討,旨在解決中面積與大面積應用中常見之照光劣化與界面缺陷問題。OPV 模組在實際使用環境下易受到紫外線、濕氣與熱應力影響,導致元件效率衰退。因此,本研究以反式結構模組為對象,建立一套穩定且具規模擴展潛力之製程基板,並結合效率提升與界面修飾策略以提升其操作壽命與可靠性。
    本研究選用PM6作為施體材料,搭配L8-BO作為受體,組成主動層,並且使用刮刀塗佈的技術在基板上製備中面積(10.8 cm²)反結構有機太陽能電池元件。首先針對基礎製程進行優化,涵蓋退火溫度與時間參數調整、擦邊區域定義之精確化,以及加熱轉藥等步驟之改善,藉此提升膜層均勻性與界面品質。經多次實驗驗證,元件之光電轉換效率(PCE)可達13.344%。此外,本研究亦於ZnO電子傳輸層導入C60與PCBM作為界面鈍化材料,藉以填補界面缺陷,進一步強化元件的穩定性與整體性能。
    光照穩定性實驗結果顯示,導入C60與C60/PCBM雙層修飾之模組,其電流密度與開路電壓於長時間照光下皆能保持穩定,效率衰退幅度明顯低於未修飾對照組。綜合而言,本研究證實透過整合優化策略,可顯著提升OPV模組穩定性與實用價值。所提出之方法兼具製程相容性與材料通用性,對推動OPV技術邁向模組化與商業化具重要參考意義。


    This study investigates the efficiency and stability improvement of medium-area organic photovoltaic (OPV) modules based on an inverted structure. OPVs are promising due to their flexibility, lightweight properties, and low-temperature processing, but Cremain vulnerable to UV exposure, moisture, and thermal stress in practical environments, especially at larger scales. To address these issues, we developed a scalable fabrication process combining structural optimization and interfacial engineering to enhance device reliability and operational lifetime.
    PM6 and L8-BO were employed as donor and acceptor materials, respectively, forming the active layer in 10.8 cm² devices via blade-coating. Key process parameters—including annealing conditions, edge-wipe definition, and preheating—were optimized, leading to a peak power conversion efficiency (PCE) of 13.344%. Furthermore, C60 and PCBM were introduced as passivation layers atop ZnO to suppress interfacial defects and improve carrier transport.
    Stability tests under continuous illumination demonstrated that devices with C60 or C60/PCBM bilayers maintained higher current density and open-circuit voltage over time, with significantly reduced efficiency loss compared to unmodified controls. These results confirm that our integrated approach enhances both performance and durability, supporting the practical application and commercialization potential of OPV modules.

    QR CODE