簡易檢索 / 詳目顯示

研究生: 洪瑞鴻
H. J. Hung
論文名稱: 高旋轉數下內置45°方形肋條矩形冷卻通道熱傳特性研究
Heat Transfer Characterstics in a 45-Deg Ribbed Coolent Channel with Rotating Number Up to 2.0
指導教授: 劉通敏
T. M. Liou
張始偉
S. W. Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 渦輪機葉片冷卻通道高旋轉數密度差比值
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在以實驗技術研究實際渦輪噴射引擎葉片內冷卻通道在高旋轉數下之熱傳特性。由文獻回顧得知現有之內置方形肋條矩形(AR=2)冷卻通道之熱傳實驗數據皆侷限於低旋轉數(Ro<0.5) 而高旋轉數下 (Ro≧0.5)相關實驗結果非常缺乏。實驗方法為熱電偶量測技術,對矩形截面(AR=2、Dh=30)內置方形肋條(H/Dh=0.1、P/H =10、α=45°)徑向外流之單一冷卻通道進行迎風面與背風面中心表面溫度量測。主要研究參數計有:旋轉數Ro (0-2.0)、雷諾數Re(5000-15000)、密度差比值DR(0.07-0.25)及冷卻通道與轉動平面夾角 β(90°、135°)。實驗數據主要以旋轉數Ro為區隔對局部紐塞數Nu與管道平均紐塞數 加以討論。低旋轉數(Ro<0.5)下實驗所得數據與先前研究結果ㄧ致。高旋轉數(Ro≧0.5)實驗數據結果分別對旋轉數Ro、密度差比值DR及冷卻通道與轉動平面夾角 β提出臨界旋轉數Ro以區隔不同熱傳增益特性。並進一步探討浮力參數Bu對熱傳增益的影響得出臨界浮力參數Bu=0.1。


    目錄 摘要 I 誌謝 II 目錄 III 表目錄 VI 圖目錄 VII 符號說明 X 第一章 緒論 1 1.1概說 1 1.2文獻回顧 3 1.3 研究動機 10 1.4 研究目的 11 1.5 統御方程式與無因次化公式推導 12 1.5.1統御方程式推導 12 1.5.1.1轉動運算子(Rotation operator)定義 12 1.5.1.2移動座標系統中的速度與加速度 14 1.5.1.3 統御方程式 16 1.5.2 無因次化公式推導 20 第二章 實驗設備及實驗方法 22 2.1 旋轉機組設備 22 2.2 熱傳實驗模組 24 2.3 實驗數據處理與實驗參數範圍 26 2.4 實驗步驟 28 2.4.1 靜態熱傳實驗步驟 28 2.4.2 旋轉熱傳實驗步驟 28 2.5 實驗誤差分析 30 第三章 結果討論 31 3.1主流方向上的熱傳分析 32 3.1.1 背風面 32 3.1.2 迎風面 34 3.2 雷諾數(Re)的影響 36 3.3 旋轉數(Ro)的影響 37 3.4密度差比值(DR)的影響 39 3.5冷卻通道與轉動平面夾角(β)的影響 42 第四章 結論及建議 43 4.1 結論 43 4.2本文主要貢獻 45 4.3 建議 46 References 47 表目錄 表1-1 文獻回顧總結 50 表1-2實際航空載具的各項運轉條件與本實驗的比較 51 表2-1 肋條幾何參數 52 表2-2 實驗參數彙整 52 表3-1 迎風面在不同的雷諾數下平均熱傳比值超過靜態下數值的旋轉數Ro彙整 53 表3-2 各雷諾數下隨著旋轉數上升密度差比值反轉為增加平均熱傳比值的臨界旋轉數Ro彙整 53 表3-3 迎風面在不同的雷諾數下β=135°的平均熱傳比值超過β=90°數值的旋轉數Ro彙整 53 圖目錄 圖1-1(a)使用於高空飛行載具與地面發電系統的燃氣渦輪機(Turbine) (b)理想的布雷登循環 (Ideal Brayton Cycle) 54 圖1-2 燃氣渦輪機冷卻技術與英國勞斯萊斯渦輪機進口溫度成長趨勢 55 圖2-1 高壓測試轉動實驗設備. 56 圖2-2 熱傳實驗模組 57 圖2-3(a) (b) 熱損失特性係數關係圖 58 圖2-4 β角度定義與典型渦輪機葉片內冷卻通道示意圖[31] 59 圖3-1 (a)-(e) 背風面Re=5000 Ro=0-2.0 不同密度差比值(DR=0.07-0.17)下熱傳比值的變化 60 圖3-2 (a)-(e) 背風面DR=0.17不同雷諾數(Re=5000-15000)下熱傳比值的變化 61 圖3-3 (a)-(e) 迎風面 Re=5000 Ro=0-2.0 不同密度差比值(DR=0.11-0.25)下熱傳比值的變化 62 圖3-4 (a)-(e) 迎風面 DR=0.25不同雷諾數(Re=5000-15000)下熱傳比值的變化 63 圖3-5 (a)迎風面旋轉數Ro大於0.3後,接近壁面相反於主流場方向速度分離示意圖 (b) Re=25000、Ro=0.48、DR=0.13 接近迎風面 速度場模擬(k-ε Model) [25] (c) Re=25000 不同旋轉數Ro與DR數速度場模擬(RSM)[23] 64 圖3-6(a)-(e) 迎風面雷諾數Re=5000 增加密度差比值DR在Ro=0.1與Ro=0.3流線方向上局部熱傳比值的變化情形 65 圖3-7(a)-(e) 迎風面 DR=0.25增加雷諾數(Re=5000-15000)在Ro=0.1與Ro=0.3流線方向上局部熱傳比值的變化情形 66 圖3-8(a)-(f) 迎風面與背風面固定DR=0.15以不同旋轉數Ro= 0.1、 0.5、 1.0,比較雷諾數(Re=5000-15000)變化對局部熱傳比值的影響 67 圖3-9(a)-(b) 迎風面與背風面固定DR=0.15不同旋轉數下,比較雷諾數(Re=5000-15000)變化對平均熱傳比值的影響 68 圖3-10(a)(b) 迎風面與背風面固定DR=0.15,比較旋轉數變化對平均熱傳比值的影響 69 圖3-11(a)-(e) 迎風面與背風面固定DR=0.15不同雷諾數下,比較 旋轉數變化對平均熱傳比值的影響 70 圖3-12(a)-(e) 固定雷諾數下迎風面在不同旋轉數下密度差比值對平均熱傳比值的關係比較 71 圖3-13(a)-(e) 固定雷諾數下Trailng Side在不同旋轉數下密度差比值對平均熱傳比值的關係比較 72 圖3-14臨界旋轉數Ro與雷諾數Re的關係圖 73 圖3-15為旋轉數Ro=0.3各雷諾數Re的密度差比值DR與平均熱傳比值的變化比較。 74 圖3-16(a) (b) 迎風面與背風面平均熱傳增益比值隨浮力參數Bu的變化。 75 圖3-17(a)-(e) 迎風面固定密度差比值DR=0.15,比較各雷諾數下冷卻通道與轉動平面夾角由β=90°至β=135° 對平均熱傳比值的影響 77 圖3-18(a)-(e) 背風面固定密度差比值DR=0.15,比較各雷諾數下冷卻通道與轉動平面夾角由β=90°至β=135° 對平均熱傳比值的影響 78

    1. T. M. Liou, J. J. Hwang, 1992, Turbulent heat transfer augmentation and friction in periodic fully developed channel flows, Journal of heat transfer, Vol. 114, pp.56-64
    2. J. C. Han, 1988, Heat transfer and friction characteristics in rec- tangular channels with rib turbulators, Journal of heat transfer, Vol. 110, pp.321-328
    3. R. Kiml, S. Mochizuki, A. Murata, 2001, Effects of rib arrangements on heat transfer and flow behavior in a rectangular rib-roughened passage: application to cooling of gas turbine blade trailing edge, Journal of heat transfer, Vol. 123, pp. 675-681
    4. P. H. Rothe, J. P. Johnston, 1979, Free shear layer behavior in rotating systems, Journal of fluids engineering, Vol. 101, pp. 117-120
    5. L. W. Swanson, I. Catton, 1987, Enhanced heat transfer due to second ary flows in mixed turbulent convection, Journal of heat transfer, Vol. 109, pp. 943-946
    6. Y. Mori, T. Fukada, W. Nakayama, 1971, Convective heat transfer in a rotating radial circular pipe, Journal of heat and mass transfer, Vol 14, pp. 1807-1824
    7. T. M. Liou, Y. S. Hwang, Y. C. Li, 2004, Flowfield and pressure measurements in a rotating two-pass duct with staggered rounded ribs skewed 45 deg to the flow, Turbo Expo GT-2004-53173
    8. J.H. Wagner, B.V. Johnson, T.J. Hajek, 1991, Heat transfer in Rotating passages with smooth walls and radial outward flow, Journal of turbomachinery, Vol.113, pp42-51
    9. J.H. Wagner ,B.V. Johnson, R. A. Graziani, F. C. Yeh, 1992, Heat transfer in rotating serpentine passages with trips normal to the flow, Journal of Turbomachinery, Vol.114, pp847-857
    10. B.V. Johnson, J. H. Wagner, G. D. Steuber, F.C. Yeh, 1994, Heat transfer in rotating serpentine passages with trips skewed to the flow, Journal of Turbomachinery, Vol.116, pp738-744
    11. B.V. Johnson, J. H. Wagner, G. D. Steuber, F.C. Yeh, 1994, Heat transfer in rotating serpentine passages with selected model orient- ations for smooth or skewed trip walls, Journal of Turbomachinery, Vol.116, pp738-744
    12. M.E. Taslim, L. A. Bondi, D. M. Kercher, An experimental investiga- tion of heat transfer in and orthogonally rotating channel roughened with 45 deg criss-cross ribs on two opposite walls, 1991, Journal of turbomachinery, Vol 113, pp 346-353
    13. S. W. Chang, W. D. Morris , 2003, Heat transfer in a radially rotating square duct fitted with in-line transverse ribs, International Journal of Thermal Sciences, pp. 267-282
    14. S. S. Hsieh, Y. J. Hong, 1995, Heat transfer coefficients in an orthogonally rotating duct with tubulators, Journal of heat transfer, vol. 117, pp. 69-78
    15. W. D. Morris, G. Ghavami-Nasr, 1991, Heat transfer measurements in rectangular channels with orthogonal mode rotation, Journal of turbo- machinery, Vol. 113, pp. 339-345
    16. J. Guidez, 1989, Study of the convective heat transfer in a rotating coolant channel, Journal of turbomachinery, Vol.111, pp. 43-50
    17. C. Y. Soong, S. T. Lin, G. J. Hwang, 1991, An experimental study of convective heat transfer in radially rotating rectangular ducts, Journal of heat transfer, Vol. 113, pp. 604-611
    18. Wen-Lung Fu, Lesley M. Wright, Je-Chin Han, 2005, Buoyancy Effect on heat transfer in Five different aspect-ratio rectangular channels with smooth walls and 45-degree ribbed walls, GT-2005-68493
    19. W. D. Morris, 1996, A rotating facility to study heat transfer in the cooling passages of turbine rotor blades, Proc. Inscn. Mech. Engrs., Vol. 210, pp. 55-63
    20. S. W. Chang, T. M. Liou, W. H. Yeh, J. H. Hung, 2006, Heat transfer in a radially rotating square sectioned duct with two opposite walls roughened by 45-deg staggered ribs, ASME turbo Expo GT 2006 - 90153
    21. S. W. Chang, T. L. Yang, W. J. Wang, 2005, Heat transfer in a rotating twin pass Trapezoidal sectioned passage roughened by skewed ribs on two opposite walls
    22. F. Zhou, J. Lagrone, S. Acharya, 2004, Internal cooling in 4:1 AR passages at high rotation numbers, GT2004-53501
    23. A. K. Sleiti, J. S. Kapat, 2004, Fluid flow and heat transfer in rotating curved duct a high rotation and density ratios, GT2004-53028
    24. A. K. Sleiti, J. S. Kapat, 2004, Effect of coriolis and centrifugal forces on turbulence and heat transfer at high rotation and buoyancy numbers in a rib-roughened internal cooling channel, GT2004-53018
    25. C. Prakash, R. Zerkle, 1992, Prediction of turbulent flow and heat transfer in a radially rotating square duct, Journal of turbomachinery, Vol.114. pp. 835-846
    26. P. Tekriwal, 1994, Heat transfer predictions with extended k-ε Turbulence model in radial cooling ducts rotating in orthogonal mode, Journal of heat transfer, Vol. 116, pp. 369-380
    27. S. Dutta, M. J. Andrews, J. C. Han, 1996, Prediction of turbulent heat transfer in rotating smooth square ductts, Journal of heat and mass transfer, Vol 39, pp. 2505-2514
    28. 張始偉 博士、王唯任,2006, Heat Transfer in Rotating Twin-Pass Trapezoidal -Sectioned Passage with Two Opposite Walls Roughened by 45 Degree Ribs,國立高雄海洋科技大學航運暨管理學院輪機工程研究所碩士論文
    29. W.D. Morris, 1981, Heat Transfer and Fluid Flow in Rotating,Coolant Channels, John Wiley&Sons Ltd, ISBN 0471101214.
    30. JHT Editorial Board of ASME J. Heat Transfer, 1993, Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results, ASME J. Heat Transfer, 115, 5-6.
    31. S. Dutta, J. C. Han, 1998, Rotational effectives on the turbine blade coolant passage heat transfer, annual review of heat transfer, Vol IX, ISBN-1567000878

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE