簡易檢索 / 詳目顯示

研究生: 卓亞克
Roman Dronyak
論文名稱: Coherent Electron Diffractive Imaging of Nanocrystals
指導教授: 陳福榮
Chen, Fu-Rong
梁耕三
Liang, Keng S.
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 電子繞射同調性同調繞射影像術
外文關鍵詞: Electron Diffraction, Coherence, Coherent Diffractive Imaging
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Coherent diffractive imaging (CDI) is a new technique for the structural analysis of materials at a resolution limited by the wavelength of the radiation involved. Due to the strong interaction of electrons with matter and short de Broglie wavelength of electrons, electron CDI offers, in principle, atomic-scale resolution of nano-objects in coherent diffraction experiments. In addition, for nanocrystals, coherent diffraction in Bragg geometry allows for the recovery of a three-dimensional (3D) structure of the sample using an angular range of crystal tilt within a few degrees.
    In this thesis, a detailed theoretical and experimental investigation of the electron CDI technique is presented. The well-known nanocrystals of MgO smoke were used as a test nano-object. For diffraction experiments, we used a highly coherent illumination from a field-emission gun as a source of electrons. In our data analysis, we developed an algorithm to reconstruct a complex exit wave from the electron diffraction pattern alone. Results of the two-dimensional (2D) CDI reveal a crystal lattice with 0.15 nm resolution using Bragg reflections, and characterize the crystal boundary with a resolution of about 3 nm using diffuse scattering measured in the vicinity of the Bragg peak.
    In 3D electron CDI, we, for the first time, experimentally determined the morphology of a single MgO nanocrystal using Bragg diffraction geometry. The iterative algorithm developed was applied to invert the 3D diffraction pattern about a (200) reflection of the nanoparticle measured at an angular range of 1.8º, which revealed a 3D image of the sample at about 8-nm resolution. Computer simulations verified the results of 2D and 3D reconstructions. The described technique offers a powerful way to image crystals, disordered materials and biological samples of nanometer size with atomic-scale resolution


    Contents Abstract i Acknowledgements ii Contents iii List of Figures vi List of Tables ix 1 Introduction 1 1.1 Interaction of Electrons with Matter 4 1.1.1 Optical refractive index of electrons 6 1.1.2 Projected potential of the sample 7 1.1.3 Weak-phase object approximation 8 1.1.4 Complex-valued scattering potential 9 1.2 Electron Diffraction by Crystalline Samples 11 1.2.1 Bragg’s condition of diffraction and excitation error 11 1.2.2 Scattering from a finite crystal 12 1.3 Methods of Phase Recovery 15 1.3.1 The phase problem 15 1.3.2 Gerchberg-Saxton and Fienup's algorithms 16 1.3.3 Difference map algorithm 18 1.3.4 Dynamic support 19 2 Coherent Electron Diffraction Experiments 21 2.1 Principle of Experimentation 21 2.1.1 Interpretation of crystal images and resolution in the electron microscopy 21 2.1.2 Coherence properties of the electron beam 24 2.1.3 Nano-beam electron diffraction of nanoparticles 26 2.1.4 Resolution in the electron CDI 28 2.2 General Survey of Au and TiO2 Nanocrystals 30 2.3 Electron CDI Study of MgO Nanocrystals 32 2.3.1 Sample preparation of MgO nanocrystals 32 2.3.2 Coherent diffraction from hydrated nanocrystals 34 2.3.3 Electron diffraction patterns for the exit wave reconstruction 37 3 Development of Optimization Procedure for the Phase Retrieval 40 3.1 Problem of Uniqueness of Solution in CDI 41 3.1.1 Oversampling condition for diffractive imaging 42 3.1.2 Sampling requirement for electron CDI 44 3.2 Optimization Procedure for the Phase Retrieval 46 3.2.1 Error metric and its standard deviation 47 3.2.2 Measure of reproducibility of solutions 49 3.2.3 Convergence map 52 3.3 Computer Simulation of Phase Recovery 54 3.3.1 The phase retrieval using noise-free data 54 3.3.2 The phase retrieval in the presence of noise in data 57 3.3.3 Guiding method for the phase retrieval 60 4 Two-Dimensional Electron Coherent Diffractive Imaging of MgO Nanocrystals 64 4.1 Diffuse Intensity and Shape of MgO Nanoparticles 64 4.1.1 Determination of the sample size and the oversampling ratio 65 4.1.2 Optimization procedure for the reconstruction of the shape function 67 4.2 Reconstruction of Electron Exit Wave Function 69 4.2.1 Effects of the missing data and the background scattering 69 4.2.2 Effects of incident electron beam 71 4.2.3 Reconstruction procedure 74 5 Electron Coherent Diffraction Tomography of a Nanocrystal 77 5.1 Diffraction Geometry of the Electron Diffraction Tomography 77 5.2 Experimental Arrangement and 3D Reconstruction 80 5.3 Dynamical Scattering Effects 83 6 Conclusions 86 List of Publications and Conference Participations 88 References 96

    1. G.-C. Yin, Y.-F. Song, M.-T. Tang, F.-R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun and H.-P. D. Shieh, Applied Physics Letters 89 (22), 221122-221123 (2006).
    2. P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38 (9), 766-773 (1948).
    3. H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander and G. B. Stephenson, Applied Physics Letters 92 (22), 221114-221113 (2008).
    4. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa and K. Yamauchi, Nat Phys 6 (2), 122-125 (2010).
    5. W. L. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson and D. T. Attwood, Nature 435 (7046), 1210-1213 (2005).
    6. M. Born and E. Wolf, Principles of optics 7th edn. (Cembridge University Press, Cembridge, 1999).
    7. M. Dyba and S. W. Hell, Physical Review Letters 88 (16), 163901 (2002).
    8. V. Westphal and S. W. Hell, Physical Review Letters 94 (14), 143903 (2005).
    9. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart and P. M. Weber, Journal of Applied Physics 97 (11), 111101 (2005).
    10. A. Zewail and J. M. Thomas, 4D electron microscopy: imaging in space and time. (Imperial Colledge Press, London, 2010).
    11. S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. N. Chapman, M. Frank, S. P. Hau-Riege, A. Szoke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu and M. M. Seibert, Nat Photon 2 (9), 560-563 (2008).
    12. T. v. Oudheusden, E. F. d. Jong, S. B. v. d. Geer, W. P. E. M. O. t. Root, O. J. Luiten and B. J. Siwick, Journal of Applied Physics 102 (9), 093501 (2007).
    13. J. C. H. Spence, T. Vecchione and U. Weierstall, Philosophical Magazine (2010).
    14. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius and K. Urban, Ultramicroscopy 75 (1), 53-60 (1998).
    15. N. Tanaka, in Advances in Imaging and Electron Physics, edited by P. W. Hawkes (Academic Press, San Diego, 2008), Vol. 153, pp. 385-437.
    16. J. C. H. Spence, in Science of microscopy, edited by P. W. Hawkes and J. C. H. Spence (Springer, New York, 2007), Vol. 2, pp. 1196-1227.
    17. J. Miao, T. Ishikawa, Q. Shen and T. Earnest, Annual Review of Physical Chemistry 59 (1), 387-410 (2008).
    18. J. Miao, 1999.
    19. I. K. Robinson, I. A. Vartanyants, G. J. Williams, M. A. Pfeifer and J. A. Pitney, Physical Review Letters 87 (19), 195505 (2001).
    20. S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall and J. C. H. Spence, Physical Review B 68 (14), 140101 (2003).
    21. Y. Takahashi, Y. Nishino, R. Tsutsumi, H. Kubo, H. Furukawa, H. Mimura, S. Matsuyama, N. Zettsu, E. Matsubara, T. Ishikawa and K. Yamauchi, Physical Review B (Condensed Matter and Materials Physics) 80 (5), 054103-054105 (2009).
    22. D. Sayre, Acta Crystallographica 5 (6), 843 (1952).
    23. D. Sayre, in Imaging Processes and Coherence in Physics, edited by M. Schlenker, M. Fink, J. P. Goedgebuer, C. Malgrange, J. C. Vienot and W. R.H. (Springer-Verlag, Berlin, 1980), Vol. 112, pp. 229-235.
    24. J. Miao, D. Sayre and H. N. Chapman, J. Opt. Soc. Am. A 15 (6), 1662-1669 (1998).
    25. J. Miao and D. Sayre, Acta Crystallographica Section A 56 (6), 596-605 (2000).
    26. R. W. Gerchberg and W. O. Saxton, Optik 35 (2), 237-246 (1972).
    27. J. R. Fienup, Appl. Opt. 21 (15), 2758 (1982).
    28. V. Elser, J. Opt. Soc. Am. A 20 (1), 40-55 (2003).
    29. V. Elser, Acta Crystallographica Section A 59 (3), 201-209 (2003).
    30. C.-C. Chen, J. Miao, C. W. Wang and T. K. Lee, Physical Review B 76 (6), 064113-064115 (2007).
    31. R. Dronyak, K. S. Liang, Y. P. Stetsko, T.-K. Lee, C.-K. Feng, J.-S. Tsai and F.-R. Chen, Applied Physics Letters 95 (11), 111908-111903 (2009).
    32. J. Miao, P. Charalambous, J. Kirz and D. Sayre, Nature 400 (6742), 342-344 (1999).
    33. C. Pellegrini, Nature 455 (7211), 297-299 (2008).
    34. T. Shintake, H. Tanaka, T. Hara, T. Tanaka, K. Togawa, M. Yabashi, Y. Otake, Y. Asano, T. Bizen, T. Fukui, S. Goto, A. Higashiya, T. Hirono, N. Hosoda, T. Inagaki, S. Inoue, M. Ishii, Y. Kim, H. Kimura, M. Kitamura, T. Kobayashi, H. Maesaka, T. Masuda, S. Matsui, T. Matsushita, X. Marechal, M. Nagasono, H. Ohashi, T. Ohata, T. Ohshima, K. Onoe, K. Shirasawa, T. Takagi, S. Takahashi, M. Takeuchi, K. Tamasaku, R. Tanaka, Y. Tanaka, T. Tanikawa, T. Togashi, S. Wu, A. Yamashita, K. Yanagida, C. Zhang, H. Kitamura and T. Ishikawa, Nat Photon 2 (9), 555-559 (2008).
    35. U. Weierstall, Q. Chen, J. C. H. Spence, M. R. Howells, M. Isaacson and R. R. Panepucci, Ultramicroscopy 90 (2-3), 171-195 (2002).
    36. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L. A. Nagahara, Science 300 (5624), 1419-1421 (2003).
    37. O. Kamimura, K. Kawahara, T. Doi, T. Dobashi, T. Abe and K. Gohara, Applied Physics Letters 92 (2), 024106-024103 (2008).
    38. O. Kamimura, T. Dobashi, K. Kawahara, T. Abe and K. Gohara, Ultramicroscopy 110 (2), 130-133 (2010).
    39. S. Morishita, J. Yamasaki, K. Nakamura, T. Kato and N. Tanaka, Applied Physics Letters 93 (18), 183103-183103 (2008).
    40. W. J. Huang, J. M. Zuo, B. Jiang, K. W. Kwon and M. Shim, Nat Phys 5 (2), 129-133 (2009).
    41. J. Frank, Electron Tomography: Three Dimensional Imaging with the Transmission Electron Microscope. (Plenum Press, New York, 1992).
    42. R. Dronyak, K. S. Liang, J.-S. Tsai, Y. P. Stetsko, T.-K. Lee and F.-R. Chen, Applied Physics Letters 96 (22), 221907-221903 (2010).
    43. J. Cowley, Diffraction physics, 2nd ed. (Elsevier, Amsterdam, 1981).
    44. M. O'Keeffe and J. C. H. Spence, Acta Crystallographica Section A 50 (1), 33-45 (1994).
    45. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation. (Cambridge Univ. Press, New York, 1999).
    46. K. Nishio, T. Isshiki and M. Shiojiri, J Electron Microsc (Tokyo) 49 (5), 607-619 (2000).
    47. A. L. Patterson, Physical Review 56 (10), 972 (1939).
    48. P. P. Ewald, Proceedings of the Physical Society 52 (1), 167 (1940).
    49. S. K. Sinha, M. Tolan and A. Gibaud, Physical Review B 57 (5), 2740 (1998).
    50. I. A. Vartanyants and I. K. Robinson, Journal of Physics: Condensed Matter 13 (47), 10593 (2001).
    51. L. Reimer, Transmission Electron Microscopy, 4nd ed. (Springer, Heidelberg, Germany, 1997).
    52. M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder and I. K. Robinson, Nature 442 (7098), 63-66 (2006).
    53. H. Lichte and M. Lehmann, Reports on Progress in Physics 71 (1), 016102 (2008).
    54. W. Coene, G. Janssen, M. Op de Beeck and D. Van Dyck, Physical Review Letters 69 (26), 3743 (1992).
    55. M. Op de Beeck, D. Van Dyck and W. Coene, Ultramicroscopy 64 (1-4), 167-183 (1996).
    56. W.-K. Hsieh, F.-R. Chen, J.-J. Kai and A. I. Kirkland, Ultramicroscopy 98 (2-4), 99-114 (2004).
    57. J. H. Seldin and J. R. Fienup, J. Opt. Soc. Am. A 7 (3), 412 (1990).
    58. W. McBride, N. L. O'Leary and L. J. Allen, Physical Review Letters 93 (23), 233902 (2004).
    59. P. Thibault, V. Elser, C. Jacobsen, D. Shapiro and D. Sayre, Acta Crystallographica Section A 62 (4), 248-261 (2006).
    60. J. R. Fienup, J. Opt. Soc. Am. A 4 (1), 118 (1987).
    61. G. Oszlányi and A. Sütő, Acta Crystallographica Section A 60 (2), 134-141 (2004).
    62. H. He, J. Opt. Soc. Am. A 23 (3), 550-556 (2006).
    63. J. S. Wu, U. Weierstall, J. C. H. Spence and C. T. Koch, Opt. Lett. 29 (23), 2737-2739 (2004).
    64. W. J. Huang, B. Jiang, R. S. Sun and J. M. Zuo, Ultramicroscopy 107, 1159-1170 (2007).
    65. P. Thibault, Ph.D. thesis, Cornell University, 2007.
    66. J. Cowley, Acta Crystallographica 12 (5), 367-375 (1959).
    67. J. C. H. Spence, High-resolution electron microscopy, 3rd ed. (Oxsford University Press, New York, 2003).
    68. F.-R. Chen, J. J. Kai, L. Chang, J. Y. Wang and W. J. Chen, J Electron Microsc (Tokyo) 48 (6), 827-836 (1999).
    69. D. J. Smith, Ultramicroscopy 108 (3), 159-166 (2008).
    70. http://www.emsl.pnl.gov/capabilities/viewInstrument.jsp?id=1031.
    71. C. C. Chang, H. S. Kuo, I. S. Hwang and T. T. Tsong, Nanotechnology 20 (11), 115401 (2009).
    72. J. C. H. Spence, U. Weierstall and M. Howells, Ultramicroscopy 101, 149-152 (2004).
    73. J. M. Zuo, M. Gao, J. Tao, B. Q. Li, R. Twesten and I. Petrov, Microscopy Research and Technique 64 (5-6), 347-355 (2004).
    74. M. A. Kirk, R. S. Davidson, M. L. Jenkins and R. D. Twesten, Philosophical Magazine 85 (4), 497 - 507 (2005).
    75. J. C. H. Spence, W. Qian and M. P. Silverman, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12 (2), 542-547 (1994).
    76. C. Dwyer, A. I. Kirkland, P. Hartel, H. Muller and M. Haider, Applied Physics Letters 90 (15), 151104-151103 (2007).
    77. J. M. Zuo, Microscopy Research and Technique 49 (3), 245-268 (2000).
    78. W. J. Huang, R. Sun, J. Tao, L. D. Menard, R. G. Nuzzo and J. M. Zuo, Nat Mater 7 (4), 308-313 (2008).
    79. M. C. Newton, S. J. Leake, R. Harder and I. K. Robinson, Nat Mater 9 (2), 120-124 (2010).
    80. I. S. Altman, I. E. Agranovski and M. Choi, Applied Physics Letters 84 (25), 5130-5132 (2004).
    81. S. A. Holt, C. F. Jones, G. S. Watson, A. Crossley, C. Johnston, C. J. Sofield and S. Myhra, Thin Solid Films 292, 96-102 (1997).
    82. R. Hacquart, J.-M. Krafft, G. Costentin and J. Jupille, Surface Science 595 (1-3), 172-182 (2005).
    83. R. Hacquart and J. Jupille, Chemical Physics Letters 439, 91-94 (2007).
    84. R. Hacquart and J. Jupille, Journal of Crystal Growth 311 (21), 4598-4604 (2009).
    85. D. Abriou and J. Jupille, Surface Science 430, L527-L532 (1999).
    86. K. Refson, R. A. Wogelius, D. G. Fraser, M. C. Payne, M. H. Lee and V. Milman, Physical Review B 52 (15), 10823 (1995).
    87. W. Neumann, J. Komrska, H. Hofmeister and J. Heydenreich, Acta Crystallographica Section A 44 (6), 890-897 (1988).
    88. M. Bertero and P. Boccacci, Introduction to inverse problem in imaging. (Institute of Physics Publishing, London, 1998).
    89. R. P. Millane, J. Opt. Soc. Am. A 7 (3), 394 (1990).
    90. R. P. Millane, J. Opt. Soc. Am. A 10 (5), 1037 (1993).
    91. J. Miao, J. Kirz and D. Sayre, Acta Crystallographica Section D 56 (10), 1312-1315 (2000).
    92. M. J. Perez-Ilzarbe, J. Opt. Soc. Am. A 9 (12), 2138 (1992).
    93. H. Nyquist, Proceedings of the IEEE 90 (2), 280-305 (2002).
    94. C. E. Shannon, Proceedings of the IInstitute of Radio Engineers 37, 10-21 (1949).
    95. G. J. Williams, M. A. Pfeifer, I. A. Vartanyants and I. K. Robinson, Physical Review B 73 (9), 094112-094118 (2006).
    96. G. J. Williams, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2005.
    97. J. R. Fienup, Appl. Opt. 36 (32), 8352-8357 (1997).
    98. M. Guizar-Sicairos, S. T. Thurman and J. R. Fienup, Opt. Lett. 33 (2), 156-158 (2008).
    99. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen and D. Shapiro, J. Opt. Soc. Am. A 23 (5), 1179-1200 (2006).
    100. G. Williams, M. Pfeifer, I. Vartanyants and I. Robinson, Acta Crystallographica Section A 63 (1), 36-42 (2007).
    101. C. I. Chou and T. K. Lee, Acta Crystallographica Section A 58 (1), 42-46 (2002).
    102. C. I. Chou, R. S. Han, S. P. Li and T.-K. Lee, Physical Review E 67 (6), 066704 (2003).
    103. O. M. Yefanov, A. V. Zozulya, I. A. Vartanyants, J. Stangl, C. Mocuta, T. H. Metzger, G. Bauer, T. Boeck and M. Schmidbauer, Applied Physics Letters 94 (12), 123104 (2009).
    104. C. Y. Song, H. D. Jiang, A. Mancuso, B. Amirbekian, L. Peng, R. Sun, S. S. Shah, Z. H. Zhou, T. Ishikawa and J. W. Miao, Physical Review Letters 101 (15) (2008).
    105. H. D. Jiang, D. Ramunno-Johnson, C. Song, B. Amirbekian, Y. Kohmura, Y. Nishino, Y. Takahashi, T. Ishikawa and J. W. Miao, Physical Review Letters 100 (3) (2008).
    106. C. Song, R. Bergstrom, D. Ramunno-Johnson, H. Jiang, D. Paterson, M. D. de Jonge, I. McNulty, J. Lee, K. L. Wang and J. Miao, Physical Review Letters 100 (2), 025504-025504 (2008).
    107. G. J. Williams, M. A. Pfeifer, I. A. Vartanyants and I. K. Robinson, Physical Review Letters 90 (17), 175501 (2003).
    108. R. P. Ferrier and R. T. Murray, Journal of Physics D: Applied Physics 1 (2), 207 (1968).
    109. V. Elser and R. P. Millane, Acta Crystallographica Section A 64 (2), 273-279 (2008).
    110. N. Lei, Acta Crystallographica Section A 63 (1), 66-76 (2007).
    111. J. Wu, U. Weierstall and J. C. H. Spence, Nat Mater 4 (12), 912-916 (2005).
    112. E. E. Fill, F. Krausz and M. G. Raizen, New Journal of Physics 10 (9), 093015 (2008).
    113. G. J. Williams, H. M. Quiney, A. G. Peele and K. A. Nugent, Physical Review B 75 (10), 104102-104107 (2007).
    114. K. Kawahara, K. Gohara, Y. Maehara, T. Dobashi and O. Kamimura, Physical Review B 81 (8), 081404 (2010).
    115. L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J. Vine, R. A. Dilanian, S. Flewett, K. A. Nugent, A. G. Peele, E. Balaur and I. McNulty, Physical Review Letters 103 (24) (2009).
    116. H. M. Quiney, K. A. Nugent and A. G. Peele, Opt. Lett. 30 (13), 1638-1640 (2005).
    117. R. Kilaas and MACTEMPASX, (http://www.totalresolution.com/MacTempasX.htm).
    118. J. Spence, Acta Crystallographica Section A 65 (1), 28-38 (2009).
    119. L. J. Allen and A. V. Martin, Modern Physics Letters B 22 (23), 2123-2135 (2008).
    120. J. Miao, T. Ohsuna, O. Terasaki, K. O. Hodgson and M. A. O’Keefe, Physical Review Letters 89 (15), 155502 (2002).
    121. R. P. Millane, J. Opt. Soc. Am. A 13 (4), 725 (1996).
    122. J. Spence, Acta Crystallographica Section A 49 (2), 231-260 (1993).
    123. A. Avilov, K. Kuligin, S. Nicolopoulos, M. Nickolskiy, K. Boulahya, J. Portillo, G. Lepeshov, B. Sobolev, J. P. Collette, N. Martin, A. C. Robins and P. Fischione, Ultramicroscopy 107 (6-7), 431-444 (2007).
    124. P. Oleynikov, S. Hovmoller and X. D. Zou, Ultramicroscopy 107 (6-7), 523-533 (2007).
    125. E. Dimmeler and R. R. Schroder, Journal of Applied Crystallography 33 (4), 1088-1101 (2000).
    126. P. Stadelmann, JEMS SE, CIME-EPFL, CH-1015 Lausanne, Switzerland (2006).
    127. M. Germann, T. Latychevskaia, C. Escher and H.-W. Fink, Physical Review Letters 104 (9), 095501 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE