簡易檢索 / 詳目顯示

研究生: 邱豐壬
CHIOU, FENG REN
論文名稱: 超臨界二氧化碳布雷頓循環之渦輪機葉片分析與研究
Supercritical CO2 Brayton Cycle Turbine Blade Analysis
指導教授: 蔣小偉
CHIANG, HSIAO WEI
口試委員: 郭啟榮
KUO, CHI JUNG
徐菘蔚
HSU, SUNG WEI
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 超臨界二氧化碳封閉式布雷頓系統
外文關鍵詞: Supercritical CO2, Close Brayton System
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石化能源使用量越來越高,然現今石化能源逐漸短缺,而工業的能源使用率卻不到50%,將近一半的能源以廢熱或者其餘無法加以利用之型態的型態排放至空氣中,自然環境逐漸惡化,對於廢熱回收或者自然熱源(如地熱)的再利用人們也越來越重視,而本實驗室也針對工廠廢熱回收系統研究多年,從次臨界循環系統發展(有機朗肯循環,ORC)逐漸發展至本研究所著重之超臨界循環系統(超臨界二氧化碳布雷頓循環)。
    選用二氧化碳的原因是基於其流體穩定性佳、臨界點條件低、取得來源難度低以及適用範圍廣,並且可減少環境中的溫室氣體。而其中TAC設備為超臨界循環系統中的一大重點,當中所使用的壓縮機與膨脹機轉子之設計更是為一大困難點,針對其工作條件的限制選擇使用徑向式轉子做為壓縮機與膨脹機的元件,為了減少設計難度以P-15噴射引擎之轉子做為基礎模型,但其葉片形狀仍需依照其設計點進行修改,而後再進行CFD模擬並反覆修正重大錯誤以增進轉子效率。而為了減少初步實驗的難度與危險性也將封閉循環改為半封閉循環以進行實驗設計。


    As the fossil fuel consumption is increasing, the energy shortage has gradually become a big problem nowadays. However, the industrial energy utilization is less than 50%, which means almost half of the precious energy is discharged into the air as waste heat or other forms that cannot be further used. The environment is deteriorating, so people are more concerned about the waste heat recovery and the uses of renewable energies (such as geothermal energy). Our laboratory has focused on researches about waste heat recovery system for plants for many years. From subcritical cycle systems (Organic Rankine Cycle, ORC) to supercritical cycle systems (Supercritical CO2 Brayton Cycle), the latter is our main research at present.
    The reasons for choosing CO2 as working fluid are because of its stability, low critical point conditions, wide range of applications and greenhouse gas reduction. The Turbine-Alternator-Compressor (TAC) component is a very important part in supercritical Brayton cycle system, especially the designs of rotors in compressor and expander, which are extremely difficult. The radial type of rotor is used both in compressor and turbine, and to reduce difficulties, I used the rotor of P-15 jet engine as basic model, but its blade shape still need to be modified corresponding to design points. Then CFD simulation is applied to improve rotor efficiency by repeatedly correct errors. At last, semi-closed system is used to reduce the difficulties of initial test and also for the safety issues.

    第一章 、 序論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 封閉式布雷頓循環 (Close Brayton Cycle) 2 1.2.2 超臨界二氧化碳 (SCO2) 5 1.2.3 徑向式壓縮機/渦輪機 (Radial Compressor/Turbine) 7 1.2.4 轉子動力學 (Rotordynamic) 17 1.3 研究目的 19 第二章 、 理論分析與推導 21 2.1 性能參數理論分析 21 2.1.1 速度三角形 (Velocity Triangle) 21 2.1.2 統御方程式 (Governing equations) 23 2.1.3 比速 (Specific Speed) 26 2.1.4 揚程 (Hydraulic Head) 26 2.1.5 水力損失 (Hydraulic Loss) 27 2.1.6 水力效率 (Hydraulic efficiency) 29 2.2 影響葉輪性能其餘因素 31 2.2.1 氣穴 (Cavitation) 31 2.2.2 淨正吸水頭 (Net Positive Suction Head,NPSH) 34 2.2.3 壓縮機性能圖 (Compressor Performance Map) 35 2.3 圓盤-轉軸-軸承系統 36 2.3.1 臨界轉速圖 (Critical speed diagram) 39 2.3.2 坎貝圖 (Campbell diagram) 40 第三章 、 分析與實驗方法 41 3.1 噴射引擎模擬軟體 GASTURB 41 3.2 出入口條件分析 42 3.3 流場模擬 46 3.3.1 建模軟體BladeGen 46 3.3.2 網格切割軟體 TurboGrid 50 3.3.3 CFD軟體 ANSYS-CFX 52 3.4 渦輪系統與測試平台設計 53 3.4.1 導引葉片 (Inducer) 53 3.4.2 外罩 54 3.4.3 轉軸-軸承系統 54 3.4.4 循環系統 55 第四章 、 分析結果與討論 57 4.1 模擬可靠度分析 57 4.1.1 空氣壓縮機葉輪分析 58 4.1.2 空氣渦輪機葉輪分析 61 4.2 超臨界二氧化碳流體初步模擬 64 4.2.1 SCO2壓縮機葉輪分析 65 4.2.2 SCO2渦輪機葉輪分析 68 4.3 渦輪轉子設計修改-I 71 4.4 渦輪轉子設計修改-II 79 第五章 、 實驗平台設計 87 5.1 實體轉子建立 87 5.2 轉子動力學分析 90 5.3 實驗與系統設計 93 第六章 、 結論與未來建議 99 參考文獻 101 附件 A CO2熱力性質表 104 附件 B CFX介紹 106 附件 C 零件圖 107 附件 D TURBINE PERFORMANCE TABLE (AIR) 111

    [1] Y.-L. Chen, "Optimal Equipment Installation Planning for Factory Waste Heat Recovery," 國立雲林科技大學工業工程與管理研究所碩士論文, January 2013.
    [2] 鄭丞佑, "Combined Cycle Study Using Organic Rankine Cycle and Microturbine," 國立清華大學動力機械工程學系碩士論文, January 2014.
    [3] E. G. Feher, "The supercritical thermodynamic power cycle," Energy conversion, vol. 8, pp. 85-90, 1968.
    [4] G. Angelino, "Carbon dioxide condensation cycles for power production," Journal of Engineering for Gas Turbines and Power, vol. 90, pp. 287-295, 1968.
    [5] S. A. Wright, R. F. Radel, M. E. Vernon, G. E. Rochau, and P. S. Pickard, "Operation and analysis of a supercritical CO2 Brayton cycle," Sandia Report, No. SAND2010-0171, 2010.
    [6] G. Kimzey, "Development of a Brayton Bottoming Cycle using Supercritical Carbon Dioxide as the Working Fluid."
    [7] J. Bahamonde Noriega, "Design method for s-CO2 gas turbine power plants: Integration of thermodynamic analysis and components design for advanced applications," TU Delft, Delft University of Technology, 2012.
    [8] P. Garg, P. Kumar, and K. Srinivasan, "Supercritical carbon dioxide Brayton cycle for concentrated solar power," The Journal of Supercritical Fluids, vol. 76, pp. 54-60, 2013.
    [9] 林俋伸, "Configuration Design and Performance analysis of Supercritical Carbon Dioxide Closed Brayton cycle," 國立清華大學動力機械工程學系碩士論文, January 2014.
    [10] http://en.wikipedia.org/wiki/Supercritical_fluid.
    [11] K. L. Suder, "Blockage development in a transonic, axial compressor rotor," Journal of turbomachinery, vol. 120, pp. 465-476, 1998.
    [12] D. Flaxington and E. Swain, "Turbocharger aerodynamic design," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 213, pp. 43-57, 1999.
    [13] R. Hunziker, H. Dickmann, and R. Emmrich, "Numerical and experimental investigation of a centrifugal compressor with an inducer casing bleed system," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 215, pp. 783-791, 2001.
    [14] A. Engeda and M. ERautenberg, "Partial Flow Performance Comparision of Semi-open and Closed Centrifugal Impellers," IMechE, C334/88, 1988.
    [15] P. He, Z. Sun, B. Guo, H. Chen, and C. Tan, "Aerothermal investigation of backface clearance flow in deeply scalloped radial turbines," Journal of Turbomachinery, vol. 135, p. 021002, 2013.
    [16] P. He, Z. Sun, H. Zhang, H. Chen, and C. Tan, "Investigation of clearance flows in deeply scalloped radial turbines," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 226, pp. 951-962, 2012.
    [17] M. P. Boyce, Gas turbine engineering handbook: Elsevier, 2012.
    [18] P. Came and C. Robinson, "Centrifugal compressor design," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 213, pp. 139-155, 1998.
    [19] S. Liu, M. Nishi, and K. Yoshida, "Impeller geometry suitable for mini turbo-pump," Journal of fluids engineering, vol. 123, pp. 500-506, 2001.
    [20] W. Jiang, J. Khan, and R. A. Dougal, "Dynamic centrifugal compressor model for system simulation," Journal of power sources, vol. 158, pp. 1333-1343, 2006.
    [21] 成安义, 付豹, and 张启勇, "氦透平膨胀机叶轮造型与设计方法," 低温工程, vol. 5, p. 011, 2010.
    [22] M. Zangeneh, B. Nikpour, and H. Watanabe, "Development of a high performance centrifugal compressor using a 3D inverse design technique," 2010.
    [23] K. Cheah, T. Lee, S. Winoto, and Z. Zhao, "Numerical flow simulation in a centrifugal pump at design and off-design conditions," International Journal of Rotating Machinery, vol. 2007, 2007.
    [24] Y. Kim, A. Engeda, R. Aungier, and G. Direnzi, "The influence of inlet flow distortion on the performance of a centrifugal compressor and the development of an improved inlet using numerical simulations," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 215, pp. 323-338, 2001.
    [25] 陳其志, "Investigation of Turbomachinery Rotor Blade Flutter," 國立清華大學動力機戒工程學系碩士論文, January 2002.
    [26] H.-W. D. Chiang and R. E. Kielb, "An analysis system for blade forced response," Journal of Turbomachinery, vol. 115, pp. 762-770, 1993.
    [27] H.-W. D. Chiang, C.-N. Hsu, W. Jeng, S.-H. Tu, and W.-C. Li, "A Microturbine Rotor-Bearing System Analysis," in ASME Turbo Expo 2002: Power for Land, Sea, and Air, 2002, pp. 811-817.
    [28] 趙家興, "Micro-Turbine Rotor-Bearing System Analysis Using FEM," 國立清華大學動力機戒工程學系碩士論文, January 2005.
    [29] J.-M. Zhang, "Design and Analysis System of a Turbopump Impeller," 國立清華大學動力機械工程學系碩士論文, January 2004.
    [30] 蘇宗寶, "離心式泵," 徐氏基金會, 1986.
    [31] http://flowviz.tumblr.com.
    [32] D. Japikse, W. D. Marscher, and R. B. Furst, "Centrifugal pump design and performance," Wilder, VT: Concepts ETI, Inc, 1997., 1997.
    [33] W.-J. Lo, "Dynamic Characteristics Analysis and Testing of a Microturbine Rotor-Bearing System," 國立清華大學動力機戒工程學系碩士論文, January 2003.
    [34] http://www.gasturb.de/.
    [35] 徐士傑, "Microturbine Packaging Development an Testing," 國立清華大學動力機械工程學系碩士論文, January 2008.
    [36] J. F. Gülich, Centrifugal pumps: Springer, 2008.
    [37] D. Fiaschi, G. Manfrida, and F. Maraschiello, "Design and performance prediction of radial ORC turboexpanders," Applied Energy, vol. 138, pp. 517-532, 2015.
    [38] S. A. Wright, T. M. Conboy, and G. E. Rochau, "Break-Even Power Transients for two Simple Recuperated S-CO2 Brayton Cycle Test Configurations," Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)2011.
    [39] J. J. Pasch, T. M. Conboy, D. D. Fleming, and G. E. Rochau, "Supercritical CO2 recompression Brayton cycle: completed assembly description," Sandia National Laboratories2012.
    [40] T. Conboy, J. Pasch, and D. Fleming, "Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop," Journal of Engineering for Gas Turbines and Power, vol. 135, p. 111701, 2013.
    [41] Y.-M. Huang, "Study of a small Turbojet Engine Performance," 國立清華大學動力機戒工程學系碩士論文, January 2002.
    [42] R. Duff, "AN EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF ROTATING FLEXIBLE SHAFT SYSTEM DYNAMICS IN ROTARY DRILLING ASSEMBLIES FOR DOWN HOLE DRILLING VIBRATION MITIGATION," University of Missouri, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE