簡易檢索 / 詳目顯示

研究生: 詹皓宇
Chan, Hao-Yu
論文名稱: 含有矽奈米顆粒仿生支架用於臨界尺寸骨缺損組織再生之研究
Biomimetic Scaffold Containing Silicon Nanoparticles for Critical-Sized Bone Defect Regeneration
指導教授: 宋信文
Sung, Hsing-Wen
口試委員: 賈維焯
林昆儒
甘霈
呂瑞梅
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 45
中文關鍵詞: 臨界尺寸骨缺損矽奈米顆粒仿生骨支架纖維排列
外文關鍵詞: critical-sized bone defect, silicon nanoparticles, biomimetic bone scaffold, fiber alignment
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨界尺寸骨缺損(critical-sized bone defect)的治療至今仍是臨床骨科中面臨的難題,由於大量的骨質流失,結構不穩定及缺血導致傷處產生大量的ROS及發炎反應,對整體癒合進程產生不良影響。一般以自體骨移植或同種異體骨移植作為兩種主要的治療方式,其仍有許多限制如:取得體積有限、具感染風險或不具骨誘導性等。在本研究中,我們將礦化膠原蛋白(mineralized collagen)結合矽奈米顆粒(silicon nanoparticles)製備為仿生骨組織工程支架,並利用控制溫度梯度製備出具有放射狀排列的纖維結構。本研究分為三部份,在材料方面,我們合成出的礦化膠原蛋白表現出近似生物骨的組成,並透過比較結構差異、機械強度、孔隙度及骨傳導性等條件找到最適合動物實驗之支架配方,而摻雜於支架內的矽奈米顆粒能夠在體外釋放具抗發炎能力的氫氣及具骨誘導性之矽酸。在細胞實驗中,含有矽奈米顆粒之支架具有降低免疫細胞內ROS及促炎細胞因子的水平、促進成骨細胞分化及誘導細胞遷移至支架中心等效果。在動物實驗中,我們將支架植入大於臨界尺寸之小鼠顱骨缺損內,證實此含有矽奈米顆粒之骨仿生支架能夠有效提高新骨生成比例,顯示其應用於臨界尺寸骨缺損再生的潛力。


    Treatment of critical-sized bone defects is still a difficult problem in clinical orthopaedics due to massive bone loss. Structural instability and ischemia result in high ROS and inflammatory response in the defect area, which adversely affects the overall healing process. Autograft or allograft are the two choices of treatment, which still have many limitations, such as limited volume acquisition, risk of infection, or lack of osteoinductive properties. In this study, we prepared mineralized collagen combined with silicon nanoparticles as a biomimetic bone tissue engineering scaffold, under controlled temperature gradients, to produce a radially aligned fibrous scaffold. The as-synthesized mineralized collagen, which exhibited a composition similar to that of biological bone, and compared the structural differences, mechanical strength, porosity, and osteoconductivity to find the most suitable scaffold formulation for animal experiments, while the silicon nanoparicles incorporated in the scaffold were able to release anti-inflammatory hydrogen and osteoinductive silicic acid. In cellular experiments, the silicon nanoparticles-containing scaffold could effectively reduce the levels of ROS and pro-inflammatory cytokines in immune cells, promote osteoblast differentiation, and induce cell migration to the scaffold center. In an animal study, we implanted the scaffold into a mouse cranial defect larger than the critical size and demonstrated that the silicon nanoparticles-containing bone biomimetic scaffold was effective in increasing the rate of new bone formation, demonstrating its potential for the repair of critical-sized bone defects.

    摘要 I Abstract II 目錄 III 圖錄 V 表目錄 VII 第一章 緒論 1 1.1 臨界尺寸骨缺損 (critical-sized bone defect) 1 1.2 仿生骨組織工程支架 2 1.3 過量活性氧物質與骨缺損再生之關係 3 1.4 氫氣與抗發炎效果 4 1.5 矽應用於促進骨缺損再生之潛力 5 1.6 研究動機與實驗目的 7 第二章 材料與方法 10 2.1 支架製備 10 2.1.1 實驗材料 10 2.1.2 MCol製備方法 10 2.1.3 支架製備 10 2.2 MCol合成鑑定 11 2.2.1 傅立葉轉換紅外光譜(FTIR) 11 2.2.2 X光繞射儀(XRD) 11 2.2.3 同步熱分析儀(SDT) 11 2.2.4 元素分析 11 2.3 支架製備最佳化 12 2.3.1 MCol濃度最佳化 12 2.3.2 nSi摻雜量最佳化 13 2.4 nSi-MCol支架之釋放分析 13 2.4.1 氫氣釋放分析 13 2.4.2 離子釋放分析 13 2.5 細胞培養 13 2.6 nSi-MCol之生物毒性測試 14 2.7 nSi-MCol抑制細胞內ROS之定性評估 14 2.8 nSi-MCol抑制細胞內ROS之定量評估 15 2.9 nSi-MCol抑制促炎細胞因子分泌之定性評估 15 2.10 nSi-MCol抑制促炎細胞因子分泌之定量評估 15 2.11 nSi-MCol促進成骨細胞分化效果探討 16 2.11.1 成骨細胞增生 16 2.11.2 成骨細胞分化 16 2.12 nSi-MCol骨傳導性測試 16 2.13 細胞遷移實驗 17 2.14 動物實驗模型 17 2.15 成骨體積分析 18 2.16 組織染色切片 18 第三章 實驗結果與討論 19 3.1 支架特性分析 19 3.1.1 MCol合成結果探討 19 3.1.2 支架配方之最佳化 22 3.1.3 nSi-MCol之釋放性能分析 27 3.2 體外實驗 28 3.2.1 材料毒性測試 28 3.2.2 nSi-MCol之抗發炎效果 29 3.2.3 nSi-MCol對成骨細胞之影響 33 3.2.4 排列結構促進細胞遷移之效果 36 3.3 動物實驗 38 3.3.1 微型電腦斷層掃描 (𝜇CT)分析 38 3.3.2 組織切片染色分析 40 第四章 結論 42 參考文獻 43

    [1] J.F. Keating, A.H. Simpson, C.M. Robinson, The management of fractures with bone loss, J Bone Joint Surg Br, 2005, 87(2):142-50.
    [2] M. Maeda, M.H. Bryant, M. Yamagata, G. Li, J.D. Earle, E.Y. Chao, Effects of irradiation on cortical bone and their time-related changes. A biomechanical and histomorphological study, J Bone Jt Surg Am, 1988, 70:392–399.
    [3] S. Stevenson, Enhancement of fracture healing with autogenous and allogeneic bone grafts, Clin Orthop Relat Res, 1998, 355:S239–246.
    [4] P. Baldwin, D. Li, D. Auston, H. Mir, R. Yoon, K. Koval, Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery, Journal of Orthopaedic Trauma, 2019, Volume 33, Issue 4, p203-213.
    [5] V.M. Goldberg, Natural History of Autografts and Allografts, 1992, Springer, London.
    [6] F.E. Weber, Tissue Engineering Part B: Reviews, 2019, 375-386.
    [7] N. Wang, H. Li, J. Wang,S. Chen,Y. Ma,Z. Zhang, Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films, ACS Appl Mater Interfaces, 2012, 26;4(9):4516-23.
    [8] Z. Li, T. Du, C. Ruan, X. Niu, Bioinspired mineralized collagen scaffolds for bone tissue engineering, Bioactive Materials, 2021, Volume 6, Issue 5, Pages 1491-1511.
    [9] X.F. Niu, R. Fan, F. Tian, X.L. Guo, P. Li, Q.L. Feng, Y.B. Fan. Calcium concentration dependent collagen mineralization. Mater. Sci. Eng. C, 2017, 73, pp. 137-143.
    [10] S.H. Joo, J.Y. Kim, E.S. Lee et al, Effects of ECM protein micropatterns on the migration and differentiation of adult neural stem cells, Sci Rep, 2015, 5:13043.
    [11] X. Feng et al, Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo, J. Mater. Chem. B, 2020, 8 , 391-405.
    [12] J.K. Yoon, H.N. Kim,S.H. Bhang et al, Enhanced bone repair by guided osteoblast recruitment using topographically defined implant, Tissue Eng Part A, 2016, 22(7–8):654–664.
    [13] Y.M. Shin, H.S. Yang, H.J. Chun, Directional Cell Migration Guide for Improved Tissue Regeneration, Bioinspired Biomaterials, 2020, Volume 1249.
    [14] A. Ilyas, T. Odatsu, A, Shah, F. Monte, H.K.W. Kim, P. Kramer, P.B. Aswath, V.G. Varanasi, Amorphous Silica: A New Antioxidant Role for Rapid Critical-Sized Bone Defect Healing. Adv. Healthcare Mater., 2016, 5: 2199-2213.
    [15] S. Jebahi, H. Oudadesse, H, el Feki, T. Rebai, H. Keskes, P. Pellen, A. el Feki, Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats, J Appl Biomed, 2012, 10 (4), 195-209.
    [16] E. Fabian, I. Gerstorfer, H.W. Thaler, H. Stundner, P. Biswas, I. Elmadfa, Nutritional supplementation affects postoperative oxidative stress and duration of hospitalization in patients with hip fracture, 2011, 123(3-4):88-93.
    [17] K. Setsukinai, U. Yasuteru, K. Katsuko, J. Hideyuki, Majima, N. Tetsuo, Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species, Journal of Biological Chemistry, 2003, Volume 278, Issue 5, Pages 3170-3175.
    [18] P. Fontanari, M. Badier, C. Guillot et al, Changes in maximal performance of inspiratory and skeletal muscles during and after the 7.1-MPa Hydra 10 record human dive, 2000, Eur J Appl Physiol, 81, 325–328.
    [19] Y. Kobayashi, S. Matsuda, K. Imamura, H. Kobayashi, Hydrogen generation by reaction of Si nanopowder with neutral water, J Nanopart Res, 2017, 19(5):176.
    [20] Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, 1979, John Wiley and Sons Inc.
    [21] K. Schwarz, D.B. Milne, Growth promoting effects of silicon in rats, Nature, 1972, 239, pp. 333-334
    [22] X. Zhou, F.M. Moussa, S. Mankoci, P. Ustriyana, N. Zhang, S. Abdelmagid, J. Molenda, W.L. Murphy, F.F. Safadi, N. Sahai, Orthosilicic acid, Si(OH)4, stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation, Acta Biomater, 2016, 15;39:192-202.
    [23] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid.
    , ACS Applied Materials & Interfaces, 2010, 2 (11), 3004-3010
    [24] L. Florence, L. Cordova, J. Pajarinen, T. Lin, Z. Yao, S. Goodman, Inflammation, Fracture and Bone Repair, Bone, 2016, 86. 10.1016.
    [25] S. Beaufils, T. Rouillon, P. Millet, J. L. Bideau, P. Weiss, J.-P. Chopart, A.L. Daltin, Synthesis of calcium-deficient hydroxyapatite nanowires and nanotubes performed by template-assisted electrodeposition, Materials Science and Engineering: C, Volume 98, 2019, Pages 333-346, ISSN 0928-4931.
    [26] R.M. Samsonraj, A. Dudakovic, P. Zan, O. Pichurin, S.M. Cool, van Wijnen AJ. A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model, Tissue Eng Part C Methods, 2017, 23(11):686-693.
    [27] J. Croissant, Y. Fatieiev, N.M. Khashab, Adv. Mater, 2017, 29, 1604634.
    [28] S.S. Wong, H.R. Zhou, M.L. Marin-Martinez, K. Brooks, J.J. Pestka, Modulation of IL-1beta, IL-6 and TNF-alpha secretion and mRNA expression by the trichothecene vomitoxin in the RAW 264.7 murine macrophage cell line. Food Chem Toxicol., 1998, 36(5):409-19.
    [29] L. Fan, J.L. Li, Z, Cai, X.G. Wang, Creating Biomimetic Anisotropic Architectures with Co-Aligned Nanofibers and Macrochannels by Manipulating Ice Crystallization, ACS Nano, 2018, 12. 10.1021
    [30] Y.E. Wang, X.P. Li, M.M. Yang, Q.H. Wei, C.C. Li, W.F. Zhang, Y. Wei, S.M. Wei, Three dimensional fabrication custom-made bionic bone preoperative diagnosis models for orthopaedics surgeries, Sci. Sin. Inf., 2015, 45:235.
    [31] I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K. Katsura, Y. Katayama, S. Asoh, S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat Med, 2007 Jun;13(6):688-94.
    [32] A. Nakamura, Y. Dohi, M. Akahane, H. Ohgushi, H. Nakajima, H. Funaoka, Y. Takakura, Osteocalcin Secretion as an Early Marker of In Vitro Osteogenic Differentiation of Rat Mesenchymal Stem Cells, Tissue Engineering Part C: Methods, 2009, 15:2, 169-180.

    QR CODE