研究生: |
捷格默罕 Masilamani Jeganmohan |
---|---|
論文名稱: |
鈀金屬錯合物催化親核試劑與親電子試劑至不飽和碳-碳鍵上之加成反應 Palladium-Catalyzed Addition Reactions of Electrophiles and Nucleophiles into Carbon-Carbon Multiple Bonds |
指導教授: |
鄭建鴻
Chien-Hong Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 197 |
中文關鍵詞: | 鈀金屬錯合物 、催化 、親核試劑 、親電子試劑 、加成反應 |
外文關鍵詞: | Palladium, Catalyzed, Nucleophiles, Electrophiles, Addition Reactions |
相關次數: | 點閱:102 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此本論文中是利用鈀金屬錯何物催化親核性試劑與親電子試劑至不飽和碳-碳鍵上之加成反應。而此論文主要分為四個章節,在第一章中主要是提到利用鈀金屬錯何物催化具活性的烯類、丙烯基氯化物及丙二烯基錫金屬化合物進行三分子偶合反應,而得到及高產率的1,7-烯炔化合物。而此反應亦可擴大至雙烯的反應中,並推測可能之進行的反應機制。第二章中主要是提到利用鈀金屬錯何物催化具活性的苯炔化合物、丙烯基氯化物及炔基錫金屬化合物進行三分子偶合反應,而得到及高產率的1,6-烯炔化合物。而此反應亦可擴大至雙烯及烯基錫金屬化合物,並推測其可能之反應機制。第三章中是利用鈀金屬錯何物催化雙烯、錫-鍺金屬化合物及烷基碘化物進行反應,而得到極高產率的產物。而此反應亦可擴大至分子內進行相同的反應而得到產物,並於最後推測其可能之反應機制。第四章中是利用鈀金屬錯何物催化雙烯、錫-矽化合物進行反應,而得到及高產率之產物,而配位基在此反應中扮演相當重要的角色,並推測可能進行之反應機制。
The thesis delineates the palladium catalyzed addition reactions of electrophiles and nucleophiles into carbon-carbon multiple bonds. This thesis is divided into four chapters. First chapter explains the synthesis of 1,7-enyne derivatives, the second chapter describes synthesis of 1,6-enynes, 1,6-enallenes and 1,6-dienes, the third chapter deals with the synthesis of substituted 2-arylallylgermanes, cyclicallylgermanes and cyclicallylsilanes and chapter 4 explains (E)-vinylicsilanes having allylstannanes in brief way.
Chapter 1 describes palladium catalyzed propargylallylation reactions of activated olefins. The three component addition reaction of allylic chlorides and allenylstannaes with activated olefins in the presence of palladium catalyst affords 1,7-enyne derivatives with high regio-, stereo and chemoselectivity in good to excellent yields. The reaction proceeds with various substituted activated olefins. Furthermore, the reaction was successfully extended to an activated dienes. A plausible mechanism based on □1-allenyl □3-allyl palladium intermediate is proposed to account for the catalytic three-component reaction.
Chapter 2 demonstrates the addition reactions of allylalkynyl, allylallenyl and allylalkenyl to benzynes in the presence of palladium catalyst. The reactions of allylic chlorides and alkynylstannanes into benzynes in the presence of palladium catalyst gave various 1-allyl-2-alkynylbenzenes in excellent yield. The reaction proceeds with various substituted benzyne precursors, allylic chlorides and alkynyl, allenyl and alkenylstannanes. This method allows an efficient synthesis of various 1-allyl-2-alkynylbenzenes, 1-allyl-2-allenylbenzenes and 1-allyl-2-alkenylbenzenes in good to excellent yields. Furthermore, the utility of 1-allyl-2-alkynylbenzenes in organic synthesis were successfully demonstrated with the synthesis of multiple rings. A possible mechanism for the present catalytic reaction is proposed.
Chapter 3 describes the synthesis of substituted 2-arylallylgermanes in a highly regio-, stereo- and chemoselective fashion involving a three-component assembly of allenes, aryl iodides and stannylgermane catalyzed by phosphine-free palladium complexes. The present catalytic reaction is highly regioselective in which aryl group and metal add to the middle and unsubstituted terminal carbon of the allene moiety, respectively. In addition, the reaction is highly stereoselective to give Z-isomer as an exclusive product. Furthermore, the catalytic reaction was successfully extended into partially intermolecular version to give cyclic metal reagents with excellent yields. The high chemoselectivity of the present reaction is due to a favorable SE2 cyclic pathway involved in transemetalation step. The mechanism involving a face-selective coordination of allenes is proposed to account for the high stereoselectivity.
Chapter 4 explains a highly regio- and stereoselective silylstannation of allenes using phosphine free palladium complexes. The addition reaction of trimethy(tributylstannyl)silane with allenes in the presence of phosphine-free palladium catalyst provided (E)-vinylicsilane having allylstannane moieties in excellent yield. The vinylic silanes and allyl stannanes present in these products allow for a large variety of chemical modifications. The nature of the ligand on the palladium complexes has a tremendous influence on the regio- and stereochemistry of present reactions.
Chapter 1
1. (a) Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis; Wiley: New York, 2002. (b) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed.; University Science Books: Sausalito, CA, 1999. (c) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (d) Ikeda, S. I. Acc. Chem. Res. 2000, 33, 511
2.(a) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J. Org. Chem. 1998, 63, 3806. (b) Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778. (c) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113.
3. (a) Tsuji, J. In Palladium Reagents and Catalysts; John Wiley and Sons: Chichester, 1995; p 61. (b) Bosnich, B.; Macknzie, P. B.; Pure Appl.Chem. 1982, 54, 189. (c) Nilson, Y. I. M.: Anderson, P. G.; Backwall, J. E. J. Am, Chem. Soc. 1993, 115, 6609.
4. (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 4387. (b) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. (c) Atkins, K.E.; Walker, W.E.; Manyik, R. M. Tetrahedron Lett. 1970, 3821. (d) Trost, B. M.; Genet, J. P. J. Am. Chem. Soc. 1976, 98, 8516. (e) Gundersen, L.; Bennehe, T.; Undheim, K. Tetrahedron Lett. 1992, 33, 1085.
5. For SnCl2; (a) Masuyama, Y.; Takahara, J. P.; Kurusu, Y. J. Am. Chem. Soc. 1988, 110, 4473. (b) Tamarua, M.; Tanaka, A.; Yasui, K.; Goto, S.; Tanaka, S. Angew. Chem. Int. Ed. Engl. 1995, 34, 878. For Et2Zn; (a) Salaun, J.; Ollivier, J.; Girard, N. Synlett. 1999, 1539. (b) Tamaru, Y.; Yasui, K.; Goto, Y.; Yajima, T.; Tanieseki, Y.; Fugami, K.; Tanaka, A. Tetrahedron Lett. 1993, 34, 7619. For SmI2; (a) Trost, B. M.; Herndon, J. W. J. Am. Chem. Soc. 1984, 106, 6835. (b) Trost, B. M.; Walchili, R. J. Am. Chem. Soc. 1987, 109, 3487. For Zn; Inanaga, J.; Tabuchi, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 1195. For In; Masuyama, Y.; Kinugawa, N.; Kurusu, Y. J. Org. Chem. 1987, 52, 3702. For InI; (a) Grigg, R.; Anwar, U.; Rasparini, M.; Savic, V.; Sridharan, V. Chem. Commun. 2000, 645. (b) Grigg, R.; Anwar, U.; Rasarini, M.; Sridharan, V. Chem. Commun. 2000, 933.
6. Chang, H.-M.; Cheng, C.-H. Org. Lett. 2000, 2, 3439.
7. (a) Nakamura, H.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113. (b)Nakamura, H.; Aoyagi, K.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 372. c) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron Lett. 2000,
41, 729.
8. (a) Solin, N.; Narayan, S.; Szabó, K. J. J. Org. Chem. 2001, 66, 1686. b) Solin, N.; Narayan, S.; Sazabó, K. J. Org. Lett. 2001, 3, 909.
9. Wallner, O. A.; Szabó, K. J. Org. Lett. 2002, 4, 1563.
10. Marshall, J. A.; Lu, Z. H.; Johns, B. A. J. Org. Chem. 1998, 63, 817.
11. (a) Aidhen, I. S.; Braslau, R. Synth. Commun. 1994, 24, 789. (b) Badone, D.; Cardamone, R.; Guzzi, U. Tetrahedron Lett. 1994, 35, 5477. (c) Huang, C.-W.; Shanmugasundaram, M.; Chang, H.-M.; Cheng, C.-H. Tetrahedron. 2003, 59, 3635.
12. (a) Wu, M.-Y.; Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471. (b) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2000, 122, 7122. (c) Huang, T.-H, Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99. (d) Jeganmohan, M.; Shanmugasundaram, M.; Cheng C.–H. Chem. Commun. 2003, 1736. (e) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (f) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. (g) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (h) Jeganmohan, M.; Shanmugasundaram, M.; Chang, K.–J.; Cheng, C.–H. Chem. Commun. 2002, 2552.
13. (a) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881. (b) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4053.
14. (a) Sturla, S.; Buchwald, S. J. Org. Chem. 2002, 67, 3398. (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 714. (c) Oh, C. H.; Jung, H. H.; Kim, J. S.; Cho, S. W. Angew. Chem. Int. Ed. 2000, 39, 752.
15. Rao, P. S.; Venkataratnam, R. V. Tetrahedron Lett. 1991, 41, 5821.
16. Sabitha, G.; Reddy, B. V.; Subba, B.; Satheesh, R.; Yadav, J. S. Chem. Lett. 1998, 773.
17. (a) Tanaka, H.; Hai, A. K. M. A.; Ogawa, H.; Torii, S. Synlett, 1993, 835. (b) Marshall, J. A.; Wang, X. J. Org. Chem. 1992, 57, 1242.
18. Inayama, S.; Mamoto, K.; Shibata, T.; Hirose, T. J. Med. Chem. 1976, 19, 433.
19. Bigi, F.; Carloni, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron Lett. 2001, 42, 5203.
20. Marshall, J. A.; Perkins, J. F.; Wolf, M.A. J. Org. Chem. 1995, 60, 5556.
21. Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302.
22. Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302.
23. Renaud, P.; Fox, M. A. J. Org. Chem. 1988, 53, 3745
24. Sneen, R. A.; Bradley, W. A. J. Am. Chem. Soc, 1972, 94, 6975.
Chapter 2
1. (a) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J. Org. Chem. 1998, 63, 3806. (b) Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778. (c) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113. (d) Wu, M.-S.; Rayabarapu, D. K.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12426.
2. Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett, 1983, 1211.
3. Pena, D.; Escudero, S.; Perez, D.; Guitian, E.; Castedo, L. Angew. Chem. Int. Ed. 1998, 37, 2659. (b) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827.
4. (a) Yoshikawa, E.; Yamamoto, Y. Angew. Chem. Int. Ed. 2000, 39, 173. (b) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280.
5. Chatani, N.; Kamitani, A.; Oshita, M.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 2001, 123, 12686.
6. (a) Yoshida, H.; Ikadai, J.; Shudo, M.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2003, 125, 6638. (b) Yoshida, H.; Tanino, K.; Ohshita, J.; Kunai, A. Angew. Chem. Int. Ed. 2004, 43, 5052.
7. (a) Yoshida, H.; Honda, Y.; Shirakawa, E.; Hiyama, T. Chem. Commun. 2001, 1880. (b) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2002, 41, 3247.
8. Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 729.
9. (a) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881. (b). Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4053.
10. (a) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (b) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. (c) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (d) Jeganmohan, M.; Shanmugasundaram, M.; Chang, K.–J.; Cheng, C.–H. Chem. Commun. 2002, 2552. (e) Jayanth, T. T.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 8445.
11) (a) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (d) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. (b) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (c) Jeganmohan, M.; Shanmugasundaram, M.; Chang, K.–J.; Cheng, C.–H. Chem. Commun. 2002, 2552. (d) Jayanth, T. T.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 8445. (e) Wu, M.-Y.; Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471. (f) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2000, 122, 7122. (j) Huang, T.-H, Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99. (g) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.–H. Chem. Commun. 2003, 1746. (h). Yang, F.-Y.; Shanmugasundaram, M.; Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12576.
12. Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2004, 7, 2821.
13. (a) Padwa, A.; Lipka, H.; Watterson, S. H.; Murphree, S. S. J. Org. chem. 2003, 68, 6238. (b) Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu. S. L. J. Am. Chem. Soc. 1993, 115, 2637. (c) Lie, A.; He, M.; Wu, S.; Zhang, X. Angew. Chem. Int. Ed. 2002, 41, 3457.
14. (a) Fairlamb, I. J. S. Angew. Chem. Int. Ed. 2004, 43, 1048. (b) Lie, A.; Waldkirch, J.P.; He, M.; Zhang, X. Angew. Chem. Int. Ed. 2002, 41, 4526. (c). Makino, T.; Itoh, K. Tetrahedron Lett. 2003, 44, 6335.
15. Oh, C. H.; Jung, H. H.; Kim, J. S.; Cho, S. W. Angew. Chem. Int. Ed. 2000, 39, 752.
16. Sturla, S. J.; Buchwald, S. L. J. Org. Chem, 2002, 67, 3398.
17. (a) Mikami, K.; Yusa, Y.; Hatano, M.; Wakabayashi, K.; Aikawa, K. Chem. Commun, 2004, 98; (b) Monnier, F.; Castillo, D.; Derien, Toupet, L.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2003, 42, 5474. (c). Ohno, H.; Miyamura, K.; Takeoka, Y.; Tanaka, T. Angew. Chem. Int. Ed. 2003, 42, 2647.
18. Rousset, S.; Abarbri, M.; Thibonnet, J.; Duchêne, A.; Parrain, J.-L. Chem. Commun. 2000, 1987.
19. Aidhen, I. S.; Braslau, R. Synth. Commun. 1994, 24, 789.
20. Labadie, Jeff W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129.
21. Brown, S.; Clarkson, S.; Grigg, R.; Sridharan, V. Tetrahedran Letters, 1993, 34, 157.
22. Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302.
Chapter 3
1. (a) Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778. (b) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J. Org. Chem. 1998, 63, 3806. (c) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113. (d) Ikeda, S. I.; Cui, D. M.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 4712. (e). Yang, F.-Y.; Shanmugasundaram, M.; Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12576.
2. Murai, S.; Amishiro, N. J. Am. Chem. Soc. 1991, 113, 7778.
3. Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1994,116, 5975.
4. (a). Tsuji, J. Organic Synthesis with Palladium Compounds; Springerverlag: New York, 1980. (b). Hegedus, L. S. Transition metal in the synthesis of complex organic molecules; University Science Book: Mill Valley, CA, 1994. (c). Yamamoto, Y.; Radhakrishnanan, U. Chem. Soc. Rev. 1999, 28, 199. (d). Zimmer, R.; Dinesh, C. U.; Nandanam, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (e). Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000, 39, 3590.
5. (a). Larock, R. C.; Berrios-Pena, N. G.; Fried, C. A. J. Org. Chem. 1991, 56, 2615. (b). Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646. (c). Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Woodal, D. E.; Yoganathan, G. Tetrahedron Lett, 2000, 41, 7125. (d). Gai, X.; Grigg, R.; Collard, S.; Muir, J. E. Chem. Commun. 2001, 1712. (e). Grigg, R.; Khamnaen, T.; Rajviroongit, S.; Sridaran, V. Tetrahedron Lett, 2002, 43, 2601.
6. Cazes, B.; Ahmar, M.; Gore, J. Tetrahedron Lett. 1985, 26, 3795.
7. Cazes, B.; Gore, J.; Friess, B. Tetrahedron Lett. 1988, 29, 4089.
8. Larock, R. C.; Zenner, J. M. J. Org. Chem. 1995, 60, 482.
9. Grigg, R.; Xu, L.-H. Tetrahedron Lett. 1996, 37, 4251.
10. Grigg, R.; Brown, S.; Sridharan, V.; Uttley, M. Tetrahedron Lett. 1997, 38, 5031.
11. Stephen, B.; Grigg, R.; Hinsley, J.; Korn, S.; Sridharan, V.; Uttley, M. D. Tetrahedron, 2001, 57, 10347.
12. Grigg, R.; Gardiner, M.; Sridharan, V.; Vicker, N. Tetrahedron Lett. 1998, 39, 435.
13. Jonasson, C.; Backvall, J. E. Tetrahedron Lett. 1998, 39, 3601.
14. (a) Gallagher, T.; Scopes, D. T. C.; Davies, I. Synlett. 1993, 85. (b). Walkup, R. D.; Guan. L.; Mosher, M. D.; Kim, S.-W.; Kim, Y.-W. Synlett. 1993, 88.
15. Wu, M.-Y.; Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471.
16. Wu, M.-Y.; F.-Y. Yang, F.-Y.; Cheng, C.-H. Tetrahedron Lett. 1999, 40, 6055.
17. Chang, H.-M.; Cheng, C.-H. J. Chem. Soc., Perkin Trans. 1, 2000, 3799.
18. (a) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2000, 122, 7122. (b) Yang, F.-Y.; Shanmugasundaram, M.; Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12576.
19. Obora, Y.; Tsuji, Y.; Kawamura, T. J. Am. Chem. Soc. 1995, 117, 9814.
20. (a) Huang, T.-H.; Chang, M.-H.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99. (b) Tsai, L. J.; Cheng, C.-H. unpublished result. (c) Tsai, L. J.; Cheng, C.-H. unpublished result.
21. Yang, J.- H.; Cheng, C.-H. unpublished result.
22. (a) Shimizu, I.; Tsuji, J. Chem. Lett. 1984, 233. (b) Ahmar, M.; Barieuz, J. J.; Cazes, B.; Goré, J.; Tetrahedron. 1987, 43, 513. (c). Chaptal, N.; Colovray-Gotteland, V.; Grandjean, C.; Cazes, B.;. Goré, J. Tetrahedron Lett. 1991, 32, 1795. (d). Gai, X.; Grigg, R.; Collard, S.; Muir, J. E. Chem. Commun., 2001, 1712.
23. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
24. (a). Akiyama, T.; Iwai, J. Syn. Lett. 1998, 273. (b). Akiyama, T.; Iwai, J.; Onuma, Y.; Kagoshima, H. Chem. Commun. 1999, 2191.
25. Akiyama, T.; Suzuki, M. Chem. Commun. 1997, 2357.
25. Kinoshita, H.; Shinokubo, H.; Oshima, K. Syn. Lett. 2002, 1916.
26. (a) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (b) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (c). Wu, M.-S. Shanmugasundaram, M.; Cheng, C.-H. Chem. Commun. 2003, 718.
27. (a) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881. (b). Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4053. (c). Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2004, 6, 2821.
28. Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.–H. Chem. Commun. 2003, 1736.
29. Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes, and Cumulenes, Elsevier, 1981.
30. Grigg, R.; Sansano, J. S. Tetrahedron. 1996, 52, 13441.
31. (a) Colvin, E. W. Silicon in organic synthesis; Butterworth; London, 1981; pp 97-124. (b) Weber, W. P. Silicon reagent for organic synthesis; Springer: Berlin, 1983; pp 173-205. (c) Colvin, E. W. Silicon Reagents in organic synthesis; Academic: London, 1988; pp 25-37. (d). Patil, S.; Rappoport, Z.; Eds, The chemistry of organosilicon compounds; Wiley: Chichester, U, K., 1988; Part 2. (e) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.
32. For recent review on allylmetal addition, See: (a) Denmark, S. E.; Almstead N. G. In Modern carbonyl chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 10. (b) Stereoselective synthesis, methods of organic chemistry (Houben-Weyl) Edition E21; Helmchen, G.; Hoffmann, R., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1996; Vol. 3, p 1357.
33. Hiyama, T. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang, P. J.; Eds.; Wiley-VCH: Weinheim, 1998; Chapter 10.
34. (a) Roberson, C. W.; Woerpl, K. A. J. Am. Chem. Soc. 2002, 124, 11246. (b) Peng, Z. H.; Woerpel, K. A. Org. Lett. 2002, 4, 2945. (c) Angel, S. R.; El-Said, N. A. J. Am. Chem. Soc. 2002, 124, 3608. (d) Denmark, S. E.; Fu, J. Org. Lett. 2002, 4, 1951.
35. (a) Castano, A. M.; Bachvall, J.-E. J. Am. Chem. Soc. 1995, 117, 560. (b) Castano, A. M.; Persson, B. A.; Bachvall, J.-E. Chem.-Eur. J. 1997, 3, 482. (c) Fernandez-Rivas, C.; Mendez, M.; Nieto-Oberhuber, C.; Echavarren, A. M. J. Org. Chem. 2002, 67, 5197. (d) Tsuji, Y.; Kajita, S.; Isobe, S.; Fuanato, M. J. Org. Chem. 1993, 58, 3607.
36. (a) Yamamoto, Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 6019. (b) Besson, L.; Gore, J.; Cazes, B. Tetrahedron Lett. 1995, 36, 3853. (c) Vicrat, N.; Cazes, B.; Gore, J. Tetrahedron. 1996, 52, 9101. (d) Larock, R. C.; Tu, C.; Pace, P. J. Org. Chem. 1998, 63, 6859. (e) Laock, R. C.; He, Y.; Leong, W. W.; Han, X.; Refvik, M. D.; Zenner, J. M. J. Org. Chem. 1988, 53, 2154.
37. (a) Powell, J.; Shaw, B. L. J. Chem. Soc. A. 1967, 1839. (b) Tibbtets, D. L.; Brown, T. L. J. Am. Chem. Soc. 1970, 92, 3031.
38. (a) Casado A. L.; Espinet, P. J. Am. Chem. Soc. 1998, 120, 8978. (b) Casado, A. L.; Espinet. P.; Gallego, A. M. J. Am. Chem. Soc. 2000, 122, 11771.
39. Mitchell, T. N.; Schneider, U.; Fröhling, B.; J. Organomet. Chem. 1990, 384, C 53. (b) Mitchell, T. N. Synthesis. 1992, 803.
Chapter 4
1 (a) For the applications of alkenyl- and allyl-metals in organic synthesis, see Comprehensive Organometallic Chemistry II, ed. Abel, E. W.; Stone, F. G. A.; Wilkinson, G.; McKillop. A. Pergamon, Oxford, 1995, vol. 11. (b) Zimmer, R.; Dinesh, C. U.; Nandanam, E.; Khan, F.A., Chem. Rev. 2000, 100, 3067.
2 (a) Watanabe, H.; Saito, M.; Sutou, N.; Kishimoto. K.; Inose, J.; Nagai, Y. J. Organomet. Chem. 1982, 225, 343. (b) Mitchell, T. N. Synthesis. 1992, 803.
3. Ichinose, Y.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1988, 61, 2693.
4. Lautens, M.; Ostrovsky, D.; Tao, B. Tetrahedron Lett. 1997, 38, 6343.
5. Mitchell, T. N.; Killing, H.; Dicke, R.; Wickenkamp, R. J. Chem. Soc. Chem. Commun. 1985, 354.
6. Mitchell, T. N.; Schneider, U.; Frohling, B. J. Organometallic chem. 1990, 384, C53-C56.
7. Watanabe, H.; Saito, M.; Sutou, N.; Nagai, Y. J. Chem. Soc., Chem. Commun. 1981, 617.
8. Suginome, M.; Ohmori, Y.; Ito, Y. Synlett. 1999, 1567.
9. Onozawa, S. Y.; Hatanaka, Y.; Tanaka, M. Chem. Commun. 1999, 1863.
10. Yang F.-Y.; C.-H. Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761.
11. Chang, K. J.; Rayabarapu, D. K.; Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2005, 127, 126.
12. Mitchell, T. N.; Schneider, U. J. Organomet. Chem. 1991, 407, 319.
13. (a) Wu, M.-Y. Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471. (b) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. Tetrahedron Lett. 1999, 40, 6055. c) Chang, H.-M.; Cheng, C.-H. J. Org. Chem. 2000, 65, 1767; d) Chang, H.-M. Cheng, C.-H. Org. Lett. 2000, 2, 3349; (c) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761.
14. Jeganmohan, M.; Shanmugasundaram, M.; Chang, K-J.; Cheng, C.-H. Chem. Commun. 2002, 2552 .
15. Huang, C.-W.; Shanmugasundaram, M.; Chang, H.-M.; Cheng, C.-H. Tetrahedron. 2003, 59, 3635.
16. Kang S-K, Ha, Y-H, Ko, B-S, Lim, Y, Jung, J. Angew. Chem. Int. Ed. 2002, 41, 343.