簡易檢索 / 詳目顯示

研究生: 捷格默罕
Masilamani Jeganmohan
論文名稱: 鈀金屬錯合物催化親核試劑與親電子試劑至不飽和碳-碳鍵上之加成反應
Palladium-Catalyzed Addition Reactions of Electrophiles and Nucleophiles into Carbon-Carbon Multiple Bonds
指導教授: 鄭建鴻
Chien-Hong Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 197
中文關鍵詞: 鈀金屬錯合物催化親核試劑親電子試劑加成反應
外文關鍵詞: Palladium, Catalyzed, Nucleophiles, Electrophiles, Addition Reactions
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此本論文中是利用鈀金屬錯何物催化親核性試劑與親電子試劑至不飽和碳-碳鍵上之加成反應。而此論文主要分為四個章節,在第一章中主要是提到利用鈀金屬錯何物催化具活性的烯類、丙烯基氯化物及丙二烯基錫金屬化合物進行三分子偶合反應,而得到及高產率的1,7-烯炔化合物。而此反應亦可擴大至雙烯的反應中,並推測可能之進行的反應機制。第二章中主要是提到利用鈀金屬錯何物催化具活性的苯炔化合物、丙烯基氯化物及炔基錫金屬化合物進行三分子偶合反應,而得到及高產率的1,6-烯炔化合物。而此反應亦可擴大至雙烯及烯基錫金屬化合物,並推測其可能之反應機制。第三章中是利用鈀金屬錯何物催化雙烯、錫-鍺金屬化合物及烷基碘化物進行反應,而得到極高產率的產物。而此反應亦可擴大至分子內進行相同的反應而得到產物,並於最後推測其可能之反應機制。第四章中是利用鈀金屬錯何物催化雙烯、錫-矽化合物進行反應,而得到及高產率之產物,而配位基在此反應中扮演相當重要的角色,並推測可能進行之反應機制。


    The thesis delineates the palladium catalyzed addition reactions of electrophiles and nucleophiles into carbon-carbon multiple bonds. This thesis is divided into four chapters. First chapter explains the synthesis of 1,7-enyne derivatives, the second chapter describes synthesis of 1,6-enynes, 1,6-enallenes and 1,6-dienes, the third chapter deals with the synthesis of substituted 2-arylallylgermanes, cyclicallylgermanes and cyclicallylsilanes and chapter 4 explains (E)-vinylicsilanes having allylstannanes in brief way.
    Chapter 1 describes palladium catalyzed propargylallylation reactions of activated olefins. The three component addition reaction of allylic chlorides and allenylstannaes with activated olefins in the presence of palladium catalyst affords 1,7-enyne derivatives with high regio-, stereo and chemoselectivity in good to excellent yields. The reaction proceeds with various substituted activated olefins. Furthermore, the reaction was successfully extended to an activated dienes. A plausible mechanism based on □1-allenyl □3-allyl palladium intermediate is proposed to account for the catalytic three-component reaction.
    Chapter 2 demonstrates the addition reactions of allylalkynyl, allylallenyl and allylalkenyl to benzynes in the presence of palladium catalyst. The reactions of allylic chlorides and alkynylstannanes into benzynes in the presence of palladium catalyst gave various 1-allyl-2-alkynylbenzenes in excellent yield. The reaction proceeds with various substituted benzyne precursors, allylic chlorides and alkynyl, allenyl and alkenylstannanes. This method allows an efficient synthesis of various 1-allyl-2-alkynylbenzenes, 1-allyl-2-allenylbenzenes and 1-allyl-2-alkenylbenzenes in good to excellent yields. Furthermore, the utility of 1-allyl-2-alkynylbenzenes in organic synthesis were successfully demonstrated with the synthesis of multiple rings. A possible mechanism for the present catalytic reaction is proposed.
    Chapter 3 describes the synthesis of substituted 2-arylallylgermanes in a highly regio-, stereo- and chemoselective fashion involving a three-component assembly of allenes, aryl iodides and stannylgermane catalyzed by phosphine-free palladium complexes. The present catalytic reaction is highly regioselective in which aryl group and metal add to the middle and unsubstituted terminal carbon of the allene moiety, respectively. In addition, the reaction is highly stereoselective to give Z-isomer as an exclusive product. Furthermore, the catalytic reaction was successfully extended into partially intermolecular version to give cyclic metal reagents with excellent yields. The high chemoselectivity of the present reaction is due to a favorable SE2 cyclic pathway involved in transemetalation step. The mechanism involving a face-selective coordination of allenes is proposed to account for the high stereoselectivity.
    Chapter 4 explains a highly regio- and stereoselective silylstannation of allenes using phosphine free palladium complexes. The addition reaction of trimethy(tributylstannyl)silane with allenes in the presence of phosphine-free palladium catalyst provided (E)-vinylicsilane having allylstannane moieties in excellent yield. The vinylic silanes and allyl stannanes present in these products allow for a large variety of chemical modifications. The nature of the ligand on the palladium complexes has a tremendous influence on the regio- and stereochemistry of present reactions.

    TABLE OF CONTENTS Page CHAPTER 1: Highly Regio- and Chemoselective Palladium-Catalyzed Propargylallylation of Activated Olefins: A Novel Route to 1-7-Enynes Derivatives Introduction 1 Results and Discussion 7 Conclusion 35 Experimental Section 36 References 57 CHAPTER 2: Palladium-Catalyzed Allylalkynylation, Allyl- allenylation, and Allylalkenylation of Benzynes: a Highly Efficient Route to 1,2-Disubstituted Arenes Introduction 63 Results and Discussion 72 Conclusion 95 Experimental Section 95 References 118 CHAPTER 3: Highly Regio-,Stereo-, and Chemoselective Aryl- germation and Arylsilation of Allenes Catalyzed by Phosphine-free Palladium Complexes: An Efficient Route to a new classes of 2-arylallylmetal reagents Introduction 121 Results and Discussion 134 Conclusion 153 Experimental Section 154 References 172 CHAPTER 4: Highly Regio- and Stereoselective Silylstannantion of allenes Catalyzed by Phosphine-free Palladium Complexes Introduction 176 Results and Discussion 180 Conclusion 189 Experimental Section 190 References 196 List of Schemes Chapter 1 Page 1.1 Palladium-Catalyzed addition reactions of Allylic Chlorides 5a-e, Allenylstannanes 12a and Aryl- ethylidene Malononitrile 6a-g 7 1.2 Synthesis of Arylethylidene Malononitrile 6a-e 9 1.3 Synthesis of Heterocyclicethylidene Malononitrile 6f-g 10 1.4 Synthesis of n-Tributylallenylstannane 12a 11 1.5 Effects of the Leaving group on the Allylic Substrate of the Propargylallylation Reaction 12 1.6 Palladium-Catalyzed addition reactions of Allylic Chlorides 5a-e and Allenylstannane 12a into (Arylmethylene)-1,3-indanediones 19a-j 18 1.7 Synthesis of Substituted (Arylmethylene)-1,3-indanediones 19a-j 19 1.8 Palladium-Catalyzed Propargylallylation 2-2-Dimethyl- 5-(arylmethylene)-1,3-dioxane-4,6-diones 8a-b 24 1.9 Synthesis of Substituted 2-2-Dimethyl-5-(arylmethylene) 1,3-dioxane-4,6-diones 21a-b 25 1.10 Palladium-Catalyzed Propargylallylation of Dienes 23a-c with Allylic Chlorides 5a-c and Allenylstannanes 12a 26 1.11 Synthesis of Activated Dienes 23a-c 28 1.12 Possible mechanism for Propargylallylation of Activated Olefins 31 1.13 Support for Involvement of □-Allyl Palladium Intermediate 24 in the present catalytic reaction 32 1.14 Support for Six-Membered Cyclic Transition State by Deuterated studies 33 1.15 Support for Six-Membered Cyclic Transition State 35 Chapter 2 2.1 Palladium-Catalyzed addition reactions of Allylic Chlorides 5a-e and Alkynylstannanes 12a-i with Benzyne Precursor 1a-d 72 2.2 Preparation of the Aryne Precursor 1a-f 73 2.3 Preparation of Substituted 2-Bromophenol 75 2.4 Synthesis of Substituted Alkynylstannanes 12a-i 75 2.5 Effects on the Leaving Group of the Allylic Substrates 77 2.6 Palladium-Catalyzed addition reactions of Allylic Chlorides 5a-e, and Allenylstannanes 19a-c with Benzyne Precursor 1a-e 82 2.7 Deuterium-Labeling Study of Allenyltributylstannane 19b 83 2.8 Synthesis of (Tributylstannyl)-1,2-butadiene 19c 84 2.9 Palladium-Catalyzed addition reactions of Allylic Chlorides 5a-e and Alkynylstannanes 21a-c with Benzynes Precursor 1a-e 86 2.10 Synthesis of (E)-2-Phenyl-1-vinylstannane 21c 87 2.11 Applications of 1-Allyl-2-alkynyl benzenes 18b, j and k 89 2.12 Possible Mechanism for Allylalkynyl, Allylallenyl, and Allylalkenylation of Benzynes 91 2.13 Support for the Involvement of □-Allyl Palladium Intermediate 25 92 2.14 Support for the Involvement of Benzyne in present catalytic reactions 93 2.15 Support for Palladium Intermediate 28 in present Benzyne reactions 95 Chapter 3 3.1 Palladium-Catalyzed addition reactions of Aryl Iodides and 15a-h Stannylgermanes 25h with Allenes 6a-d 134 3.2 Synthesis of Allenes 6a-d 135 3.3 Preparation of Tributylstannyltrimethylgermane 25h 136 3.4 Palladium-Catalyzed addition reactions of Iodoallenes 20a-j and Stannylgermanes 25h 141 3.5 Synthesis of substituted 1-Iodo-2-allenyloxymethylbenzene 20a-e 142 3.6 Synthesis of N-(o-Iodobenzyl)-N-(phenylsulfonyl) -1,2-propadienylamine 20f-j 143 3.7 Palladium-Catalyzed addition reactions of Iodoallenes 20a-j and Stannylsilanes 25a 146 3.8 Possible mechanism for addition reactions of Aryl Iodides and Stannylgermanes with Allenes 149 3.9 Possible Mechanism for the addition reactions of Stannylgermanes to Iodoallenes 152 Chapter 4 4.1 Palladium-Catalyzed Silylstannantion 10a-b of Allenes 1a-k 181 4.2 Preparation of Allenes 1a-h 182 4.3 Determination of Stereochemistry of Products 11 Based on the NOE Studies 185 4.4 Possible Mechanism for the Palladium-Catalyzed Silylstannantion of Allenes 187 List of Tables Table 1 Page 1.1 Effects of Catalysts, Allyl Halides 5 and Solvents on the Propargylallylation of Malononitrile 6a with Allyl Halide 5 and Allenylstannane 12a 13 1.2 Palladium-Catalyzed Propargylallylation of Malononitriles 6a-g with Allylic Chlorides 5a-e and Allenylstannane 12a 15 1.3 Palladium-Catalyzed Propargylallylation of Indanediones 19a-j with Allylic Chlorides 5a-b, d-e and Allenylstannane 12a 21 1.4 Palladium-Catalyzed Propargylallylation of Substituted 2-2-Dimethyl-5-(arylmethylene)-1,3-dioxane-4,6-diones 21a-b with Allylic Chlorides 5a-b, d and Allenylstannane 12a 26 1.5 Palladium-Catalyzed Propargylallylation of Dienes 23a-c with Allylic Chlorides 5a-b, d and Allenylstannane 12a 29 Table 2 2.1 Effects of Catalysts, Allyl Halides CH2=CHCH2X, and Solvents on the Allylalkynylation of Benzyne 1a with Allyl Halide 5 and Alkynylstannane 12a 78 2.2 Palladium-Catalyzed Allylalkynylation of Benzynes 1a-d with Allylic Chlorides 5a-e and Alkynylstannanes 12a-i 80 2.3 Palladium-Catalyzed Allylallenylation of Benzynes 1a-e with Allylic Chlorides 5a-e and Allenylstannanes 19a-c 86 2.4 Palladium-Catalyzed Allylalkenylation of Benzynes 1a-d with Allylic Chlorides 5a-e and Alkenylstannanes 21a-c 88 2.5 Palladium-Catalyzed Multiple-Ring Formation of 1,6-Enynes 18b, 18j and 18k with Aromatic Iodides 23a-b 90 Table 3 3.1 Effects of Catalysts and Solvents on the three component assembling of 4-Methoxy Aryl Iodide 15a, Allenes 6a, and Stannylgermanes 25h 137 3.2 Palladium-Catalyzed three component assembling of Aryl Iodides 15a-h with Allenes 6a-d and Stannylgermanes 25h 139 3.3 Effects of Solvents on the reaction of 1-Iodo-2-allenyloxymethylbenzene 20a and Stannylgermanes 25h 144 3.4 Palladium-Catalyzed Partially Intermolecular Coupling reactions of Substituted Iodoallenes 20a-j and Stannylgermane 25h 145 3.5 Palladium-Catalyzed Partially Intermolecular Coupling reactions of Substituted Iodoallenes 20a-j and Stannylgermane 25a 148 Table 4 4.1 Effects of Catalysts and Solvents on the addition reaction of Allene 1a, and Silylstannane 10a 183 4.2 Palladium-Catalyzed addition reactions of Allenes 1, and Silylstannanes 10a-b 185

    Chapter 1
    1. (a) Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis; Wiley: New York, 2002. (b) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed.; University Science Books: Sausalito, CA, 1999. (c) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (d) Ikeda, S. I. Acc. Chem. Res. 2000, 33, 511
    2.(a) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J. Org. Chem. 1998, 63, 3806. (b) Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778. (c) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113.
    3. (a) Tsuji, J. In Palladium Reagents and Catalysts; John Wiley and Sons: Chichester, 1995; p 61. (b) Bosnich, B.; Macknzie, P. B.; Pure Appl.Chem. 1982, 54, 189. (c) Nilson, Y. I. M.: Anderson, P. G.; Backwall, J. E. J. Am, Chem. Soc. 1993, 115, 6609.
    4. (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 4387. (b) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. (c) Atkins, K.E.; Walker, W.E.; Manyik, R. M. Tetrahedron Lett. 1970, 3821. (d) Trost, B. M.; Genet, J. P. J. Am. Chem. Soc. 1976, 98, 8516. (e) Gundersen, L.; Bennehe, T.; Undheim, K. Tetrahedron Lett. 1992, 33, 1085.
    5. For SnCl2; (a) Masuyama, Y.; Takahara, J. P.; Kurusu, Y. J. Am. Chem. Soc. 1988, 110, 4473. (b) Tamarua, M.; Tanaka, A.; Yasui, K.; Goto, S.; Tanaka, S. Angew. Chem. Int. Ed. Engl. 1995, 34, 878. For Et2Zn; (a) Salaun, J.; Ollivier, J.; Girard, N. Synlett. 1999, 1539. (b) Tamaru, Y.; Yasui, K.; Goto, Y.; Yajima, T.; Tanieseki, Y.; Fugami, K.; Tanaka, A. Tetrahedron Lett. 1993, 34, 7619. For SmI2; (a) Trost, B. M.; Herndon, J. W. J. Am. Chem. Soc. 1984, 106, 6835. (b) Trost, B. M.; Walchili, R. J. Am. Chem. Soc. 1987, 109, 3487. For Zn; Inanaga, J.; Tabuchi, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 1195. For In; Masuyama, Y.; Kinugawa, N.; Kurusu, Y. J. Org. Chem. 1987, 52, 3702. For InI; (a) Grigg, R.; Anwar, U.; Rasparini, M.; Savic, V.; Sridharan, V. Chem. Commun. 2000, 645. (b) Grigg, R.; Anwar, U.; Rasarini, M.; Sridharan, V. Chem. Commun. 2000, 933.
    6. Chang, H.-M.; Cheng, C.-H. Org. Lett. 2000, 2, 3439.
    7. (a) Nakamura, H.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113. (b)Nakamura, H.; Aoyagi, K.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 372. c) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron Lett. 2000,
    41, 729.
    8. (a) Solin, N.; Narayan, S.; Szabó, K. J. J. Org. Chem. 2001, 66, 1686. b) Solin, N.; Narayan, S.; Sazabó, K. J. Org. Lett. 2001, 3, 909.
    9. Wallner, O. A.; Szabó, K. J. Org. Lett. 2002, 4, 1563.
    10. Marshall, J. A.; Lu, Z. H.; Johns, B. A. J. Org. Chem. 1998, 63, 817.
    11. (a) Aidhen, I. S.; Braslau, R. Synth. Commun. 1994, 24, 789. (b) Badone, D.; Cardamone, R.; Guzzi, U. Tetrahedron Lett. 1994, 35, 5477. (c) Huang, C.-W.; Shanmugasundaram, M.; Chang, H.-M.; Cheng, C.-H. Tetrahedron. 2003, 59, 3635.
    12. (a) Wu, M.-Y.; Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471. (b) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2000, 122, 7122. (c) Huang, T.-H, Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99. (d) Jeganmohan, M.; Shanmugasundaram, M.; Cheng C.–H. Chem. Commun. 2003, 1736. (e) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (f) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. (g) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (h) Jeganmohan, M.; Shanmugasundaram, M.; Chang, K.–J.; Cheng, C.–H. Chem. Commun. 2002, 2552.
    13. (a) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881. (b) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4053.
    14. (a) Sturla, S.; Buchwald, S. J. Org. Chem. 2002, 67, 3398. (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 714. (c) Oh, C. H.; Jung, H. H.; Kim, J. S.; Cho, S. W. Angew. Chem. Int. Ed. 2000, 39, 752.
    15. Rao, P. S.; Venkataratnam, R. V. Tetrahedron Lett. 1991, 41, 5821.
    16. Sabitha, G.; Reddy, B. V.; Subba, B.; Satheesh, R.; Yadav, J. S. Chem. Lett. 1998, 773.
    17. (a) Tanaka, H.; Hai, A. K. M. A.; Ogawa, H.; Torii, S. Synlett, 1993, 835. (b) Marshall, J. A.; Wang, X. J. Org. Chem. 1992, 57, 1242.
    18. Inayama, S.; Mamoto, K.; Shibata, T.; Hirose, T. J. Med. Chem. 1976, 19, 433.
    19. Bigi, F.; Carloni, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron Lett. 2001, 42, 5203.
    20. Marshall, J. A.; Perkins, J. F.; Wolf, M.A. J. Org. Chem. 1995, 60, 5556.
    21. Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302.
    22. Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302.
    23. Renaud, P.; Fox, M. A. J. Org. Chem. 1988, 53, 3745
    24. Sneen, R. A.; Bradley, W. A. J. Am. Chem. Soc, 1972, 94, 6975.
    Chapter 2
    1. (a) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J. Org. Chem. 1998, 63, 3806. (b) Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778. (c) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113. (d) Wu, M.-S.; Rayabarapu, D. K.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12426.
    2. Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett, 1983, 1211.
    3. Pena, D.; Escudero, S.; Perez, D.; Guitian, E.; Castedo, L. Angew. Chem. Int. Ed. 1998, 37, 2659. (b) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827.
    4. (a) Yoshikawa, E.; Yamamoto, Y. Angew. Chem. Int. Ed. 2000, 39, 173. (b) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280.
    5. Chatani, N.; Kamitani, A.; Oshita, M.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 2001, 123, 12686.
    6. (a) Yoshida, H.; Ikadai, J.; Shudo, M.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2003, 125, 6638. (b) Yoshida, H.; Tanino, K.; Ohshita, J.; Kunai, A. Angew. Chem. Int. Ed. 2004, 43, 5052.
    7. (a) Yoshida, H.; Honda, Y.; Shirakawa, E.; Hiyama, T. Chem. Commun. 2001, 1880. (b) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2002, 41, 3247.
    8. Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 729.
    9. (a) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881. (b). Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4053.
    10. (a) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (b) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. (c) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (d) Jeganmohan, M.; Shanmugasundaram, M.; Chang, K.–J.; Cheng, C.–H. Chem. Commun. 2002, 2552. (e) Jayanth, T. T.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 8445.
    11) (a) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (d) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. (b) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (c) Jeganmohan, M.; Shanmugasundaram, M.; Chang, K.–J.; Cheng, C.–H. Chem. Commun. 2002, 2552. (d) Jayanth, T. T.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 8445. (e) Wu, M.-Y.; Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471. (f) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2000, 122, 7122. (j) Huang, T.-H, Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99. (g) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.–H. Chem. Commun. 2003, 1746. (h). Yang, F.-Y.; Shanmugasundaram, M.; Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12576.
    12. Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2004, 7, 2821.
    13. (a) Padwa, A.; Lipka, H.; Watterson, S. H.; Murphree, S. S. J. Org. chem. 2003, 68, 6238. (b) Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu. S. L. J. Am. Chem. Soc. 1993, 115, 2637. (c) Lie, A.; He, M.; Wu, S.; Zhang, X. Angew. Chem. Int. Ed. 2002, 41, 3457.
    14. (a) Fairlamb, I. J. S. Angew. Chem. Int. Ed. 2004, 43, 1048. (b) Lie, A.; Waldkirch, J.P.; He, M.; Zhang, X. Angew. Chem. Int. Ed. 2002, 41, 4526. (c). Makino, T.; Itoh, K. Tetrahedron Lett. 2003, 44, 6335.
    15. Oh, C. H.; Jung, H. H.; Kim, J. S.; Cho, S. W. Angew. Chem. Int. Ed. 2000, 39, 752.
    16. Sturla, S. J.; Buchwald, S. L. J. Org. Chem, 2002, 67, 3398.
    17. (a) Mikami, K.; Yusa, Y.; Hatano, M.; Wakabayashi, K.; Aikawa, K. Chem. Commun, 2004, 98; (b) Monnier, F.; Castillo, D.; Derien, Toupet, L.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2003, 42, 5474. (c). Ohno, H.; Miyamura, K.; Takeoka, Y.; Tanaka, T. Angew. Chem. Int. Ed. 2003, 42, 2647.
    18. Rousset, S.; Abarbri, M.; Thibonnet, J.; Duchêne, A.; Parrain, J.-L. Chem. Commun. 2000, 1987.
    19. Aidhen, I. S.; Braslau, R. Synth. Commun. 1994, 24, 789.
    20. Labadie, Jeff W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129.
    21. Brown, S.; Clarkson, S.; Grigg, R.; Sridharan, V. Tetrahedran Letters, 1993, 34, 157.
    22. Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302.
    Chapter 3
    1. (a) Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778. (b) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J. Org. Chem. 1998, 63, 3806. (c) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113. (d) Ikeda, S. I.; Cui, D. M.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 4712. (e). Yang, F.-Y.; Shanmugasundaram, M.; Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12576.
    2. Murai, S.; Amishiro, N. J. Am. Chem. Soc. 1991, 113, 7778.
    3. Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1994,116, 5975.
    4. (a). Tsuji, J. Organic Synthesis with Palladium Compounds; Springerverlag: New York, 1980. (b). Hegedus, L. S. Transition metal in the synthesis of complex organic molecules; University Science Book: Mill Valley, CA, 1994. (c). Yamamoto, Y.; Radhakrishnanan, U. Chem. Soc. Rev. 1999, 28, 199. (d). Zimmer, R.; Dinesh, C. U.; Nandanam, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (e). Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000, 39, 3590.
    5. (a). Larock, R. C.; Berrios-Pena, N. G.; Fried, C. A. J. Org. Chem. 1991, 56, 2615. (b). Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646. (c). Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Woodal, D. E.; Yoganathan, G. Tetrahedron Lett, 2000, 41, 7125. (d). Gai, X.; Grigg, R.; Collard, S.; Muir, J. E. Chem. Commun. 2001, 1712. (e). Grigg, R.; Khamnaen, T.; Rajviroongit, S.; Sridaran, V. Tetrahedron Lett, 2002, 43, 2601.
    6. Cazes, B.; Ahmar, M.; Gore, J. Tetrahedron Lett. 1985, 26, 3795.
    7. Cazes, B.; Gore, J.; Friess, B. Tetrahedron Lett. 1988, 29, 4089.
    8. Larock, R. C.; Zenner, J. M. J. Org. Chem. 1995, 60, 482.
    9. Grigg, R.; Xu, L.-H. Tetrahedron Lett. 1996, 37, 4251.
    10. Grigg, R.; Brown, S.; Sridharan, V.; Uttley, M. Tetrahedron Lett. 1997, 38, 5031.
    11. Stephen, B.; Grigg, R.; Hinsley, J.; Korn, S.; Sridharan, V.; Uttley, M. D. Tetrahedron, 2001, 57, 10347.
    12. Grigg, R.; Gardiner, M.; Sridharan, V.; Vicker, N. Tetrahedron Lett. 1998, 39, 435.
    13. Jonasson, C.; Backvall, J. E. Tetrahedron Lett. 1998, 39, 3601.
    14. (a) Gallagher, T.; Scopes, D. T. C.; Davies, I. Synlett. 1993, 85. (b). Walkup, R. D.; Guan. L.; Mosher, M. D.; Kim, S.-W.; Kim, Y.-W. Synlett. 1993, 88.
    15. Wu, M.-Y.; Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471.
    16. Wu, M.-Y.; F.-Y. Yang, F.-Y.; Cheng, C.-H. Tetrahedron Lett. 1999, 40, 6055.
    17. Chang, H.-M.; Cheng, C.-H. J. Chem. Soc., Perkin Trans. 1, 2000, 3799.
    18. (a) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2000, 122, 7122. (b) Yang, F.-Y.; Shanmugasundaram, M.; Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12576.
    19. Obora, Y.; Tsuji, Y.; Kawamura, T. J. Am. Chem. Soc. 1995, 117, 9814.
    20. (a) Huang, T.-H.; Chang, M.-H.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99. (b) Tsai, L. J.; Cheng, C.-H. unpublished result. (c) Tsai, L. J.; Cheng, C.-H. unpublished result.
    21. Yang, J.- H.; Cheng, C.-H. unpublished result.
    22. (a) Shimizu, I.; Tsuji, J. Chem. Lett. 1984, 233. (b) Ahmar, M.; Barieuz, J. J.; Cazes, B.; Goré, J.; Tetrahedron. 1987, 43, 513. (c). Chaptal, N.; Colovray-Gotteland, V.; Grandjean, C.; Cazes, B.;. Goré, J. Tetrahedron Lett. 1991, 32, 1795. (d). Gai, X.; Grigg, R.; Collard, S.; Muir, J. E. Chem. Commun., 2001, 1712.
    23. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
    24. (a). Akiyama, T.; Iwai, J. Syn. Lett. 1998, 273. (b). Akiyama, T.; Iwai, J.; Onuma, Y.; Kagoshima, H. Chem. Commun. 1999, 2191.
    25. Akiyama, T.; Suzuki, M. Chem. Commun. 1997, 2357.
    25. Kinoshita, H.; Shinokubo, H.; Oshima, K. Syn. Lett. 2002, 1916.
    26. (a) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233. (b) Shanmugasundaram, M.; Wu, M.–S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.–H. J. Org. Chem. 2002, 67, 7724. (c). Wu, M.-S. Shanmugasundaram, M.; Cheng, C.-H. Chem. Commun. 2003, 718.
    27. (a) Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881. (b). Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4053. (c). Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2004, 6, 2821.
    28. Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.–H. Chem. Commun. 2003, 1736.
    29. Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes, and Cumulenes, Elsevier, 1981.
    30. Grigg, R.; Sansano, J. S. Tetrahedron. 1996, 52, 13441.
    31. (a) Colvin, E. W. Silicon in organic synthesis; Butterworth; London, 1981; pp 97-124. (b) Weber, W. P. Silicon reagent for organic synthesis; Springer: Berlin, 1983; pp 173-205. (c) Colvin, E. W. Silicon Reagents in organic synthesis; Academic: London, 1988; pp 25-37. (d). Patil, S.; Rappoport, Z.; Eds, The chemistry of organosilicon compounds; Wiley: Chichester, U, K., 1988; Part 2. (e) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.
    32. For recent review on allylmetal addition, See: (a) Denmark, S. E.; Almstead N. G. In Modern carbonyl chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 10. (b) Stereoselective synthesis, methods of organic chemistry (Houben-Weyl) Edition E21; Helmchen, G.; Hoffmann, R., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1996; Vol. 3, p 1357.
    33. Hiyama, T. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang, P. J.; Eds.; Wiley-VCH: Weinheim, 1998; Chapter 10.
    34. (a) Roberson, C. W.; Woerpl, K. A. J. Am. Chem. Soc. 2002, 124, 11246. (b) Peng, Z. H.; Woerpel, K. A. Org. Lett. 2002, 4, 2945. (c) Angel, S. R.; El-Said, N. A. J. Am. Chem. Soc. 2002, 124, 3608. (d) Denmark, S. E.; Fu, J. Org. Lett. 2002, 4, 1951.
    35. (a) Castano, A. M.; Bachvall, J.-E. J. Am. Chem. Soc. 1995, 117, 560. (b) Castano, A. M.; Persson, B. A.; Bachvall, J.-E. Chem.-Eur. J. 1997, 3, 482. (c) Fernandez-Rivas, C.; Mendez, M.; Nieto-Oberhuber, C.; Echavarren, A. M. J. Org. Chem. 2002, 67, 5197. (d) Tsuji, Y.; Kajita, S.; Isobe, S.; Fuanato, M. J. Org. Chem. 1993, 58, 3607.
    36. (a) Yamamoto, Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 6019. (b) Besson, L.; Gore, J.; Cazes, B. Tetrahedron Lett. 1995, 36, 3853. (c) Vicrat, N.; Cazes, B.; Gore, J. Tetrahedron. 1996, 52, 9101. (d) Larock, R. C.; Tu, C.; Pace, P. J. Org. Chem. 1998, 63, 6859. (e) Laock, R. C.; He, Y.; Leong, W. W.; Han, X.; Refvik, M. D.; Zenner, J. M. J. Org. Chem. 1988, 53, 2154.
    37. (a) Powell, J.; Shaw, B. L. J. Chem. Soc. A. 1967, 1839. (b) Tibbtets, D. L.; Brown, T. L. J. Am. Chem. Soc. 1970, 92, 3031.
    38. (a) Casado A. L.; Espinet, P. J. Am. Chem. Soc. 1998, 120, 8978. (b) Casado, A. L.; Espinet. P.; Gallego, A. M. J. Am. Chem. Soc. 2000, 122, 11771.
    39. Mitchell, T. N.; Schneider, U.; Fröhling, B.; J. Organomet. Chem. 1990, 384, C 53. (b) Mitchell, T. N. Synthesis. 1992, 803.
    Chapter 4
    1 (a) For the applications of alkenyl- and allyl-metals in organic synthesis, see Comprehensive Organometallic Chemistry II, ed. Abel, E. W.; Stone, F. G. A.; Wilkinson, G.; McKillop. A. Pergamon, Oxford, 1995, vol. 11. (b) Zimmer, R.; Dinesh, C. U.; Nandanam, E.; Khan, F.A., Chem. Rev. 2000, 100, 3067.
    2 (a) Watanabe, H.; Saito, M.; Sutou, N.; Kishimoto. K.; Inose, J.; Nagai, Y. J. Organomet. Chem. 1982, 225, 343. (b) Mitchell, T. N. Synthesis. 1992, 803.
    3. Ichinose, Y.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1988, 61, 2693.
    4. Lautens, M.; Ostrovsky, D.; Tao, B. Tetrahedron Lett. 1997, 38, 6343.
    5. Mitchell, T. N.; Killing, H.; Dicke, R.; Wickenkamp, R. J. Chem. Soc. Chem. Commun. 1985, 354.
    6. Mitchell, T. N.; Schneider, U.; Frohling, B. J. Organometallic chem. 1990, 384, C53-C56.
    7. Watanabe, H.; Saito, M.; Sutou, N.; Nagai, Y. J. Chem. Soc., Chem. Commun. 1981, 617.
    8. Suginome, M.; Ohmori, Y.; Ito, Y. Synlett. 1999, 1567.
    9. Onozawa, S. Y.; Hatanaka, Y.; Tanaka, M. Chem. Commun. 1999, 1863.
    10. Yang F.-Y.; C.-H. Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761.
    11. Chang, K. J.; Rayabarapu, D. K.; Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2005, 127, 126.
    12. Mitchell, T. N.; Schneider, U. J. Organomet. Chem. 1991, 407, 319.
    13. (a) Wu, M.-Y. Yang, F.-Y.; Cheng, C.-H. J. Org. Chem. 1999, 64, 2471. (b) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. Tetrahedron Lett. 1999, 40, 6055. c) Chang, H.-M.; Cheng, C.-H. J. Org. Chem. 2000, 65, 1767; d) Chang, H.-M. Cheng, C.-H. Org. Lett. 2000, 2, 3349; (c) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761.
    14. Jeganmohan, M.; Shanmugasundaram, M.; Chang, K-J.; Cheng, C.-H. Chem. Commun. 2002, 2552 .
    15. Huang, C.-W.; Shanmugasundaram, M.; Chang, H.-M.; Cheng, C.-H. Tetrahedron. 2003, 59, 3635.
    16. Kang S-K, Ha, Y-H, Ko, B-S, Lim, Y, Jung, J. Angew. Chem. Int. Ed. 2002, 41, 343.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE