簡易檢索 / 詳目顯示

研究生: 吳柏輝
Wu, Po-Hui
論文名稱: 考量反向式天際線之Top-k查詢處理
Top-k Query Processing Considering Reverse Skyline Retrieval
指導教授: 陳良弼
Chen, Arbee L. P.
口試委員: 柯佳伶
Koh, Jia-Ling
范耀中
Fan, Yao-Chung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 29
中文關鍵詞: 反向式天際線
外文關鍵詞: Reverse Skyline
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 給定一群使用者的需求規格以及一群產品的規格,雙資料型態的反向式天際線對於單一產品會取得一群使用者,而這些使用者依照本身規格需求皆會把此產品視為天際線之一。
    最近的研究關於解決雙資料型態的反向式天際線問題中,目前以[WTW09]發表的BRS演算法為目前為止最佳的演算法,此演算法利用R-tree索引結構的特性藉由減少存取索引的次數去加快處理時間。BRS 針對單一的產品能快速地取得此產品的反向式天際線。在本篇論文中,我們第一個提出此新的問題,在反向式天際線的概念下找尋最受歡迎的k個產品。倘若我們利用BRS去解決此問題,勢必要對於每一個產品都套用BRS演算法取得每個產品的反向式天際線大小,在經由排序去挑出具有最大反向式天際線的前k個產品。不同於以上所提到的方法,我們設計了一個演算法直接評估哪k個產品具有最大的反向式天際線,預先避免去計算那些不可能成為答案的產品。我們結合了R-tree索引結構的特性也利用的計算過的資訊去加速評估的時間。最後,我們藉由許多實驗將我們的方法比較了上述提到的BRS以及另一個解決此問題的基礎方法。如結論所示,當使用者需求的量大時我們的演算法將會有很好的效能。


    Given a set of products and users, the Bichromatic Reverse Skyline query from a product returns a set of users who consider this product as one of their skyline points.
    In recent researches on addressing bichromatic reverse skyline query, the state-of-the-art algorithm is the BRS algorithm [WTW09], which utilizes some properties of R-tree index structure to speed up the processing time by reducing IO accesses. BRS finds the reverse skyline of one product rapidly. In this thesis, we make the first attempt to study a new problem on extracting the k most popular products by reverse skyline retrieval. If using BRS to solve this problem, BRS has to be applied to every product, and the reverse skyline of all products generated has to be sorted such that the top k products are the results. Different from the above method, we design an algorithm to directly estimate which k products have the most reverse skyline, avoiding calculating some products that could not be the answers in advance. We combine the properties of R-tree structure and the computed information to speed up the estimating time. Then we compare our method with a basic method and the BRS algorithm by many experiments. As in conclusion, we get a good performance when the amount of users is big.

    Acknowledgement.................................i Abstract.......................................ii Table of Contents.............................iii List of Figures................................iv 1 Introduction............................1 2 Related Works...........................5 3 Preliminaries...........................7 3.1 Problem Formulation.....................7 3.2 Data structure used in our Solution.....9 4 Top-k Query Processing.................14 4.1 Upper bound of a product R-tree node...14 4.2 The GBRS Algorithm.....................18 5 Performance Evaluation.................20 5.1 Experiment Setup.......................20 5.2 Experiment Results.....................21 6 Conclusions............................26 References.....................................27

    [BKS01] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of the 17th International Conference on Data Engineering, ICDE2001, Heidelberg, Germany, pp. 421-430.
    [BCP06] I. Bartolini, P. Ciaccia, and M. Patella. SaLSa: Computing the skyline without scanning the whole sky. In Proceedings of the 2006 ACM International Conference on Information and Knowledge Management, CIKM2006, Arlington, Virginia, USA, pp. 405-414.
    [CGG03] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In Proceedings of the 19th International Conference on Data Engineering, ICDE2003, Bangalore, India, pp. 717-719.
    [DS07] E. Dellis and B. Seeger. Efficient Computation of Reverse Skyline Queries. In Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB2007, Vienna, Austria, pp. 291-302.
    [GSG05] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets. In Proceedings of the 31st International Conference on Very Large Data Bases, VLDB2005, Trondheim, Norway, pp. 229-240.
    [HLK10] A. Han, Z. Li, D. Kwon and Y. Park. An Efficient Method for Processing Reverse Skyline Queries over Arbitrary Spatial Objects. In Proceedings of the 2nd International Workshop on Database Technology and Applications, DBTA2010, Wuhan, Hubei, China, pp. 1-4.
    [LC08] X. Lian and Lei. Chen. Monochromatic and bichromatic reverse skyline search over uncertain databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD2008, Vancouver, BC, Canada, pp. 213-226.
    [LHK10] Z. Li, A. Han, D. Kwon and Y. Park. A Two-Phased Refinement Algorithm to Process Reverse Skylines without Pre-Processing. In Proceedings of the 2nd International Workshop on Database Technology and Applications, DBTA2010, Wuhan, Hubei, China, pp. 1-4.
    [LZL07] K. C. K. Lee , B. Zheng, H. Li, and W. C. Lee. Approaching the skyline in Z order. In Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB2007, Vienna, Austria, pp. 279-290.
    [OM84] J. A. Orenstein and T.H. Merret. A class of data structures for associate searching. In Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of Database Systems, PODS1984, Waterloo, Canada, pp. 294-305.
    [PTF05] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems. ACM Trans. Database Syst. 30, 1 (Mar. 2005) pp. 41-82.
    [RDG] Random dataset generator for SKYLINE operator evaluation: http://randdataset.projects.postgresql.org/
    [SBS08] D. Sacharidis, P. Bouros, and T. Sellis. Caching dynamic skyline queries. In Proceedings of the 20th International Conference on Statistical and Scientific Database Management, SSDBM2008, Hong Kong, China, pp. 455-472.
    [SS06] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB2006, Seoul, Korea, pp. 751-762.
    [TEO01] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In Proceedings of the 27th International Conference on Very Large Data Bases, VLDB2001, Roma, Italy, pp. 301-310.
    [WTW09] X. Wu, Y. Tao, R. C. W. Wong, L. Ding and J. X. Yu. Finding the influence set through skylines. In Proceedings of the 12nd International Conference on Extending Database Technology, EDBT2009, Saint Petersburg, Russia, pp. 1030-1041.
    [WWC11] W. C. Wang, E. T. Wang and A. L. P. Chen. Dynamic Skylines Considering Range Queries. In proceedings of the 16th International Conference on Database Systems for Advanced Applications, DASFAA2011, Hong Kong, China, pp.235-250.
    [ZLC09] L. Zhu, C. Li and H. Chen. Efficient Computation of Reverse Skyline on Data Stream. In Proceedings of the 2nd International Joint Conference on Computational Sciences and Optimization, CSO2009, Sanya, Hainan, China, pp. 735-739.
    [ZMC09] S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline computation using object-based space partitioning. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD’09, Providence, Rhode Island, pp. 483-494.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE