研究生: |
呂前宏 Chien-Hung Lu |
---|---|
論文名稱: |
氧化鋰電子緩衝層對有機電致發光元件之影響 Effect of Lithium Oxide Electronic Buffer Layer on Organic Electronluminescent Devices |
指導教授: |
周卓煇
Jwo-Huei Jou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 氧化鋰 、有機電致發光元件 、可撓式 、有機發光二極體 |
外文關鍵詞: | Lithium oxide, organic electronluminescent devices, flexible, organic light emitting diodes |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究採用一種新材料Li2O作為電子緩衝層,藉由Li2O電子緩衝層的加入,來提高電子射入有機層的能力,進而提昇元件的亮度及發光效率。本論文共分三部份:1. Li2O對有機電致發光元件之影響,2. Li2O在Al負電極與Alq3界面間之影響,3. Li2O對可撓式有機電致發光元件之影響。
在第一部份,其元件結構為ITO(750Å)/TPD(400Å)/Alq3(400 Å)/Li2O(0-20Å)/Al(1500Å),結果顯示Li2O為5Å的元件,輸出亮度在100cd/m2時,其驅動電壓為6.8V,Li2O為10 Å及20 Å的元件,驅動電壓分別為6.7V及6.9V,而不含Li2O的元件,驅動電壓為8.6V;當施以13V的電壓時,Li2O為5 Å的元件亮度為10440 cd/m2,當驅動電壓為7V時,元件發光效率為1.28 lm/W,在固定2mA的電流操作下,元件發光亮度於2小時後衰減至原來的0.9,於4小時後衰減至原來的0.88,實驗結果顯示,Li2O為5 Å的元件,其元件特性表現是最好的。
而在原子力顯微鏡分析方面,由實驗結果得知,Li2O與有機層Alq3接著性良好。而元件在加入Li2O緩衝層後,鋁膜在元件Al/Alq3界面的突刺明顯減少,且粗糙度也趨於平坦。由此可知,Li2O緩衝層有效阻擋Al膜突刺深入有機層,不至於因鋁膜尖端放電使元件損壞,而且使元件有效地將電子射入有機層,進而提高電子電洞覆合效率及發光亮度。推測這是元件亮度及發光效率大幅改善的主要原因。
在第二部分,本研究分別鍍覆一層(Li2O+Alq3)與(Al+ Li2O)於Al負電極與Alq3界面間,即形成結構分別為ITO(750 Å )/TPD(400 Å )/ Alq3(350Å)/(Alq3+Li2O)(50Å )/Al(1500 Å)與ITO(750 Å )/TPD(400 Å )/ Alq3(400 Å)/(Li2O+Al)(50 Å )/Al(1500 Å),實驗結果顯示,在通以9V的驅動電壓時,Alq3/ (Alq3+Li2O)/Al及Alq3/ (Li2O+Al)/Al元件發光效率分別為0.72及0.53 lm/W,而未加入Li2O之元件發光效率為0.41 lm/W,顯然,加入Li2O之元件,發光效率皆呈現較好表現。而在元件穩定性方面,Alq3/(Alq3+Li2O)/Al與Alq3/(Li2O+Al)/Al元件,亮度分別於2小時後衰減至原來的0.73及0.49,4小時後分別衰減至原來的0.71及0.41;而未加入Li2O之元件,亮度於2小時後衰減至原來的0.21,4小時後衰減至原來的0.13,在Alq3與Al這兩層之間,無論是加入(Alq3+Li2O)或(Li2O+Al)於元件中,其穩定性皆比原來的好。
在第三部份,以Li2O作為電子緩衝層,製備可撓式有機電致發光元件,其結構為在可撓式塑膠基材上鍍上Ag(400 Å )/TPD(400 Å )/ Alq3(400 Å )/ Li2O(5 Å )/Al(1500 Å),結果顯示,以100cd/m2為比較亮度時,ITO玻璃基材之元件,驅動電壓為6.8V;可撓式塑膠基材元件,驅動電壓為7.5V。在驅動電壓為10V時,ITO玻璃基材之元件亮度為2240cd/m2,可撓式塑膠基材元件亮度為1340cd/m2;在驅動電壓為5V時,ITO玻璃基材之元件發光效率為0.76 lm/W,可撓式塑膠基材元件發光效率為0.15 lm/W;在驅動電壓為9V時,ITO玻璃基材之元件發光效率升至1.18 lm/W,而可撓式塑膠基材元件發光效率升至1.1 lm/W,對於Li2O加入可撓式有機電致發光元件,不但元件亮度提昇,而且發光效率也達到和ITO玻璃基材元件之水準。
陸、參考文獻
1. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70,152 (1997)
2. F. Li, H. Tang, J. Anderegg, and J. Shinar, Appl. Phys. Lett. 70,1233 (1997)
3. G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N.
Peyghambarian, Appl. Phys. Lett. 73, 1185 (1998)
4. V. E. Choong, S. Shi, J. Curless, and F. So, Appl. Phys. Lett. 76,958 (2000)
5. S. Naka, M. Tamekawa, T. Terashita, H. Okada, H. Anada, and H. Onnagawa, Synthetic Metals 91, 129 (1997)
6. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
7. W. Helfrich and W. G. Schneider, Phys. Rev. Lett. 14, 229 (1965)
8. J. Dresner, RCA Rev. 30, 322 (1969)
9. D. F. Williams, and M. Schadt, Proc. IEEE 58, 476 (1970)
10. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27 L269, (1988)
11. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27 L713, (1988)
12. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 55, 1489 (1989)
13. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57, 531 (1990)
14. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Bums, and A. B. Holmes, Nature 347, 539 (1990)
15. S. A. VanSlyke, C. W. Tang, and L. C. Robert, U. S. Pat. No.4,720,432 (1988)
16. P. E. Burroughes, and S. R. Forrest, Appl. Phys. Lett. 64, 2285 (1994)
17. L. Do, E. Ham, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq.Cryst. 280, 373 (1996)
18. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996)
19. T. Enokida, M. Tamano, and S. Okutsu, U. S. Pat. No. 5,759,444(1998)
20. T. Enokida, M. Tamano, S. Okutsu, and T. Onikubo, U. S. Pat. No. 5,948,941 (1999)
21. N. X. Hu, S. Xie, B. S. Ong, Z. D. Popovic, A. M. Hor, and P. Liu, U.S. No. 5,891,587 (1999)
22. K. Yamashita, T. Mori, T. Mizutani, H. Miyazki, and T. Takeda,Thin Solid Films 363, 33, (2000)
23. H. Kawamurs, H. Nakamura, and C. Hosokawa, U. S. No.
6,074,734 (2000)
24. Y. Hamada, T. Tsutsui, H. Fujii, Y. Nishio, H. Takahashi, and K. Shibata, Appl. Phys. Lett. 71, 23 (1997)
25. J. Kido, T. Uemura, H. Kimura, N. Okuda, N. Ueba,Y. Okuda, and H.Osaka, U. S. Pat. No.5,792,567 (1998)
26. T. Sano, Y. Hamada, and K. Shibata, U.S. Pat. No. 5,779,937 (1998)
27. W. B. Kang, N. Yu, A. Tokida,T. Potrawa, and A. Winterfeldt, U. S. Pat. No. 5,919,579 (1999)
28. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477 (1992)
29. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 62, 3238 (1993)
30. T. Fukuda, T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takezoe, and A. Fukuda, Appl. Phys. Lett. 68, 2346 (1996)
31. M. A. Baldo, D. F. Brlen, and S. R. Forrest, U. S. Pat. No. 6,097,147 (2000)
32. S. Miyata, and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap.8 (1997)
33. J. Shi, and C. W. Tang, Appl. Phys, Lett. 70, 1665 (1997)
34. Y. Mamada, T. Sano, K. Shibata, and K. Kuroki, Jap. J. Appl. Phys. 34, p. 2, L824 (1995)
35. S. Miyata, and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap.9 (1997)
36. J. Kido, and T. Mizukami, U. S. Pat. No. 6,013,384 (2000)
37. C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, U. S. Pat. No. 6,020,078 (2000)
38. M. E. Thompson, S. R. Forrest, and P. Burrows, U. S. Pat. No. 6,048,630 (2000)
39. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett. 75, 1682 (1999)
40. L. S. Hung, and C. W. Tang, Appl. Phys. Lett. 74, 3209 (1999)
41. Z. L. Zhang, X. Y. Jiang, S. H. Xu, T. Nagatomo, and O. Omoyo, Synthetic Metals 91, 131 (1997)
42. S. R. Forrest, P. Burrows, M. E. Thompson, V. Bulovic, U. S. Pat. No. 5,998,803 (1999)
43. T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Appl. Phys. Lett. 71,1762 (1997)
44. V. Bulovic, G. Gu, P. Burrows, S. R. Forrest, and M. E.
Thompson, Nature 380, 29 (1996)
45. V. Bulovic, S. R. Forrest, P. Burrows, D. Z. Garbuzov, U. S. Pat.No. 5,834,893 (1998)
46. G. Gu, V. Khalfin, and S. R. Forrest, Appl. Phys. Lett. 73, 2399 (1998)
47. P. Burrows, and S. R. Forrest, U. S. Pat. No. 5,917,280 (1999)
48. Z. Shen, S. R. Forrest, and P. Burrows, U. S. Pat. No. 5,932,895 (1999)
49. G. Gu, P. Burrows, and S. R. Forrest, U. S. Pat. No. 5,844,363 (1998)
50. Y. Sato, S. Ichinosawa, H. Hanai, IEEE Journal of Selected Topics in Quantum Electronics 4, 40 (1998)
51. P. F. Smith, P. Gerroir, S. Xie, A. M. Hor, and Z. Popovic, Langmuir 14, 5946 (1998)
52. F. Papadimitrakopoulos, X. Zhang, D. L. Thomsen, and K. A.
Higginson, Chem. Mater. 8, 1363 (1996)
53. H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp, and G. Xu, Appl. Phys. Lett. 72, 756 (1998)
54. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922 (1994)
55. J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheets, and R. L. Moon, J. Appl. Phys. 80, 6002 (1996)
56. H. Aziz, and G. Xu, J. Phys. Chem. B 101, 4009 (1997)
57. H. Aziz, Z. Popovic, C. Tripp, N. X. Hu, A. M. Hor, and G. Xu, Appl. Phys. Lett. 72, 2642 (1998)
58. M. Probst, and R. Haight, Appl. Phys. Lett. 70, 1420 (1997)
59. S. F. Lim, L. Ke, W. Wang, and S. J. Chua, Appl. Phys. Lett. 78, 2116 (2001)
60. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett.64, 815 (1994)
61. V. Bulovic, S. R. Forrest, P. Burrows, and D. Z. Garbuzov, U. S. Pat. No. 6,046,543 (2000)