研究生: |
黃重穎 Huang, Chung-Ying |
---|---|
論文名稱: |
W頻段與V頻段變壓器技術之低雜訊放大器設計 Design of W-band and V-band Low Noise Amplifiers with Transformer Techniques |
指導教授: |
劉怡君
Liu, Yi-Chun |
口試委員: |
徐碩鴻
朱大舜 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 低雜訊放大器 |
相關次數: | 點閱:63 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於CMOS製程的發展和演進,微波積體電路在V頻段(40-75 GHz)與W頻段(75-110 GHz)的應用有顯著的成長。例如:應用於霧視系統之成像接收器陣列、影像傳輸系統之高資料傳輸速率接收機等。在無線通訊系統中,低雜訊放大器(LNA)為接收機之第一級電路,須要能放大訊號到足夠大小並且不增加額外雜訊。良好的低雜訊放大器設計目標,須要有以下的特性,如:足夠的增益(Gain)、低雜訊係數(Noise Figure)、良好的線性度、良好的輸入阻抗匹配與維持電路的穩定度。然而,在W頻段下,CMOS主被動元件之寄生電容、低崩潰電壓和低品質因數,使得電路設計有所困難。
此論文中,完成了三個實作在90-nm CMOS製程之低雜訊放大器,兩個應用於W頻段,最後一個應用於V頻段。第一個設計主要採用了輸入端的變壓器作為回授路徑,同時達到寬頻的輸入阻抗匹配與低雜訊係數。此設計達到6.5 GHz 的頻寬、在64GHz時增益可達16.1 dB、最低雜訊係數為10 dB、線性度IP1-dB度可達-18 dBm。第二個設計是第一個設計的改良版本。由於電路走線的方式不同,電磁模擬的環境設定與精準度同時會受到影響,為了改進第一個設計,而採用了極間變壓器設計,以取代原本極間所使用電容,並且同時優化了級間之阻抗匹配。此設計達到20 GHz 的頻寬、在76GHz時增益可達7.6 dB、最低雜訊係數為7.5 dB、線性度IP1-dB度可達-12 dBm。最後一個設計則採用了轉導提升(Gm-boosting)技術,在CMOS之閘級與源級間使用變壓器作為回授路徑,且第一、二級級間同時使用變壓器來做為阻抗匹配。此設計之模擬結果可達到10 GHz 的頻寬、在59GHz時增益可達9.6 dB、最低雜訊係數為5 dB、線性度IP1-dB度可達-12 dBm。
Due to the scaling of silicon technology, millimeter-wave (mm-wave) integrated circuits especially in W-band (75-110 GHz) and V-band (40-75 GHz) are widely explored in recent years. For example, a CMOS imaging receiver array for fog vision camera and security, and a CMOS transceiver for high-speed video streaming. In wireless communication systems, low noise amplifier (LNA) is the first block in the receiver to amplify the received weak signal with minimum noise added. A good LNA design requires a high gain, low noise figure, high linearity, good input-output matching, and stability. However, the designs of W-band front-end circuits in CMOS technology are challenging due to the transistor parasitic capacitance, the low breakdown voltage, and the quality of the on-chip passive devices.
This thesis presents two LNAs in W-band and one LNA in V-band in 90-nm CMOS. The first design is a W-band LNA with a shunt-series transformer feedback at the input to achieve a wideband input matching and low noise performance simultaneously. The first design achieves a 3-dB bandwidth of 6.5 GHz, a peak gain of 16.1 dB at 64 GHz, a minimum noise figure of 10 dB, and an input P1-dB of -18 dBm. The second work is an improved design of the first one. Physical layout is revised to improve the accuracy of the electromagnetic modeling. Inter-stage capacitors are substituted for inter-stage transformers for matching optimization. The second design achieves a wide 3-dB bandwidth of 20 GHz, a peak gain of 7.6 dB at 76 GHz, a minimum noise figure about 7.5 dB at 76 GHz, and an input P1-dB of -12 dBm. Lastly, a V-band LNA is proposed. The Gm-boosting technique is adapted in the first stage with a source-to-gate transformer to improve the voltage gain. The T-coil peaking feedback transformer is designed at the output of the first stage to enhance the inter-stage bandwidth. The shunt-series transformer in the inter-stage serves as the matching network to provide a wideband loading. The V-band design in simulation achieves a 3-dB bandwidth of 10 GHz, a peak gain of 9.6 dB at 59 GHz, a minimum noise figure of 5 dB at 59 GHz, and an input P1-dB of -12 dBm. All of the proposed amplifiers are designed by the minimum noise measure technique to optimize their performances. Ground shielding under the passive devices are used to minimize the substrate loss.
[1] C. H. Doan et al., “Millimeter-Wave CMOS Design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan., 2005.
[2] W. H. Lin, Y. N. Jen, J. H. Tsai, H. C. Lu, T. W. Huang, "V-band fully-integrated CMOS LNA and DAT PA for 60 GHz WPAN applications," in Microwave Conference (EuMC), 2010 European , vol., no., pp.284-287, 28-30 Sept., 2010.
[3] K. Kang, Brinkhoff, J., Lin, F., "A 60 GHz LNA with 18.6 dB gain and 5.7 dB NF in 90nm CMOS," in Microwave and Millimeter Wave Technology (ICMMT), 2010 International Conference on , vol., no., pp.164-167, 8-11 May 2010.
[4] S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64GHz 6.5 dB NF 15.5 dB gain LNA in 90nm CMOS,” in Proc. European Solid-State Circuits Conf., 2007, pp. 352–355.
[5] Y.-S. Lin et al., “Low-power 77-81 GHz CMOS LNA with excellent matching for automotive radars,” Electron. Lett., vol. 50, no. 3, pp. 207–209, Jan. 2014.
[6] R. Berenguer et al., “A 43.5mW 77GHz receiver front-end in 65nm CMOS suitable for FM-CW automotive radar,” IEEE Custom Integrated Circuits Conference, Sep. 2010, pp. 1–4.
[7] C. Kim et al., “A CMOS centric 77GHz automotive radar architecture,” IEEE RFIC 2012. Dig., Jun. 2012, pp. 131–134.
[8] H. V. Le et al., “A 77 GHz CMOS low noise amplifier for automotive radar receiver,” in IEEE Int. RF Integr. Technol. Symp., 2012, pp. 174–176.
[9] Demirel, N., Severino, R.R., Ameziane, C., Taris, T., Begueret, J.B., Kerherve, E., Mariano, A., Pache, D., and Belot, D. ”Millimeter-wave chip set for 77–81 GHz automotive radar application,” IEEE New Circuits and Systems Conf. (NEWCAS), Bordeaux, France, June 2011, pp. 253–256.
[10] Chen, A.Y.K., Baeyens, Y., Chen, Y.K., and Lin, J.”A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging,” IEEE Microw. Wirel. Compon. Lett., 2010, 20, (2), pp. 103–105.
[11] Le, H.V., Duong, H.T., Ta, C.M., Huynh, A.T., Evans, R.J., and Skafidas, E.”A 77 GHz CMOS low noise amplifier for automotive radar receiver,” IEEE Radio-Freq. Integr. Technol. (RFIT), Singapore, November 2012, pp. 174–176.
[12] Agarwal, P.; Sah, S.P.; Deukhyoun Heo, "A 4.8 mW, 4.4 dB NF, wideband LNA using positively coupled transformer for V-band applications," in Microwave Symposium (IMS), 2014 IEEE MTT-S International , vol., no., pp.1-3, 1-6 June 2014.
[13] T. Yao, M. Gordon, K. Tang, K. Yau, M. Yang, P. Schvan, and S. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60 GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[14] E. Cohen, S. Ravid, and D. Ritter, “An ultra-low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS foundry for 60 GHz phase array radio,” in Proc. IEEE RFIC Symp., 2008, pp. 61–64.
[15] Po-Yu Chang; Sy-Haur Su; Hsu, S.S.H.; Wei-Han Cho; Jun-De Jin, "An Ultra-Low-Power Transformer-Feedback 60 GHz Low-Noise Amplifier in 90 nm CMOS," in Microwave and Wireless Components Letters, IEEE , vol.22, no.4, pp.197-199, April 2012.
[16] Kundu, S.; Paramesh, J., "A Compact, Supply-Voltage Scalable 45–66 GHz Baseband-Combining CMOS Phased-Array Receiver," in Solid-State Circuits, IEEE Journal of , vol.50, no.2, pp.527-542, Feb. 2015.
[17] Shita Guo; Tianzuo Xi; Ping Gui; Jing Zhang; Wooyeol Choi; Kenneth, K.O.; Yanli Fan; Daquan Huang; Gu, R.; Morgan, M., "54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB gain using transformer feedback Gm-boosting technique," in Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian , vol., no., pp.185-188, 10-12 Nov. 2014.