簡易檢索 / 詳目顯示

研究生: 侯誌峰
Chih-Feng Hou
論文名稱: 晶格波茲曼法邊界條件之發展
Development of boundary condition in lattice Boltzmann method
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 1冊
中文關鍵詞: 晶格波茲曼邊界條件
外文關鍵詞: lattice Boltzmann, boundary condition
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In the thesis, a lattice Boltzmann boundary treatment for pressure and velocity boundary conditions is presented. A new boundary condition is proposed to handle the unknown distribution functions at the boundaries. We assume every unknown distribution function has a correction term F for modification. The singular corner point is treated by two types of methods, and obtain a close result.
    This scheme is applied to two-dimensional Poiseuille flow, Couette flow with wall injection, lid-driven square cavity flow, and three-dimensional Poiseuille flow. Numerical simulations exhibit the scheme is second order accurate in space discretization.


    1 Introduction i 1.1 Introduction . . . . . . . . . . . . . . . . . . i 1.2 Literature Survey . . . . . . . . . . . . . . . . ii 1.3 Objective and Motivation . . . . . . . . . . . . iii 2 Lattice Boltzmann Equation v 2.1 The Boltzmann Equation . . . . . .. . . . . . . . v 2.2 Temporal Discretization . . . . . . . . ... . . . ix 2.3 Low-Mach-Number Approximation . . . . . . . . . . xi 2.4 Discretization of Phase Space . . . . . . . . . . xii 3 Numerical Implementation xiv 3.1 Simulation Procedure . . . . . . . . . . . . . . . xiv 3.2 Boundary Conditions in 2-D Simulation . . . . . . .xv 3.2.1 Velocity Boundary Condition . . . . . . . . . . .xvi 3.2.2 Bounce-Back Based Boundary Condition . . . . . . xix 3.2.3 Pressure Boundary Condition . . . . .. . . . . . xx 3.2.4 Corner Treatment . . . . . . . . . . . . . . . . xx 3.3 Boundary Conditions in 3-D Simulation . . . . . . .xxi 3.3.1 Velocity Boundary Condition . . . . . . . . . . .xxii 3.3.2 Bounce-Back Based Boundary Condition . . . . . . xxiv 3.3.3 Pressure Boundary Condition . . . . . . . . . . .xxv 3.3.4 Corner/Edge Treatment . . . . . . . . . . . . . xxv 3.4 Periodic Boundary Condition . . . . . . . . . . . xxvii 4 Results xxx 4.1 2-D Poiseuille Flow in a Channel . . . . . . . . xxx 4.1.1 Periodic Boundary Condition . . . . . . . . . .xxx 4.1.2 Pressure Boundary Condition . . . . . . .. . . xxxi 4.1.3 Velocity Boundary Condition . . . . . . . . .. xxxii 4.2 Couette Flow with Wall Injection . . . . . . . . xxxiii 4.3 Lid-Driven Cavity . . . . . . . . . . . . . . . xxxiii 4.4 3-D Poiseuille Flow in a Square Duct . . . . . xxxiv 4.4.1 Periodic Boundary Condition . . . . . . . . . xxxiv 4.4.2 Pressure Boundary Condition . . . . . . . . xxxv 5 Conclusions xlv

    [1] X. Shan and H. Chen, \Lattice Boltzmann model for simulating flows with multiple phases and components," Phys. Rev. E 47, 1815, 1993.
    [2] X. Shan and H. Chen, \Simulation of non-ideal gases and liquid-gas phase transition by the lattice Boltzmann equation," Phys. Rev. E 49, 2941, 1994.
    [3] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part I. Theoretical foundation," J. Fluid Mech. 271, 285, 1994;
    [4] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part II. Numerical results," J. Fluid Mech. 271, 311, 1994.
    [5] S. Chen, H. Chen and W. H. Matthaeus, \Lattice Boltzmann magneto-hydrodynamics," Phys. Rev. Lett. 67, 3776, 1991.
    [6] S. P. Dawson, S. Chen and G. Doolen, \Lattice Boltzmann computations for reactiondi®usion equations," J. Comp. Phys. 98, 1514, 1993.
    [7] X. He, Q. Zou, L.-S. Luo and M. Dembo, \Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model," J. Statist. Phys. 87, 115, 1997.
    [8] K. Y. Hu and C. A. Lin, \Lattice Boltzmann method for complex and moving boundaries," master thesis, National Tsing Hua Univesity, Taiwan, 2003.
    [9] U. Frisch, B. Hasslacher and Y. Pomeau, \Lattice-gas automata for the Navier-Stokes equation," Phys. Rev. Lett. 56, 1505, 1986.
    [10] S. Wolfram, \Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45,471, 1986.
    [11] F. J. Higuera, S. Succi and R. Benzi, \3-dimensional flows in complex geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345 1989.
    [12] F. J. Higuera and J. Jeme'nez, \Boltzmann approach to lattice gas simulations," Europhys. Lett. 9, 663, 1989.
    [13] S. Harris, \An Introduction to the Theory of the Boltzmann Equation," Holt, Rinehart and Winston, New York, 1971.
    [14] P. L. Bhatnagar, E. P. Gross and M. Krook, \A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component
    systems," Phys. Rev. 94, 511, 1954.
    [15] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau and J. P. Rivet, \Lattice gas hydrodynamics in two and three dimensions," Complex
    Syst. 1, 649, 1987.
    [16] D. O. Martinez, W. H. Matthaeus, S. Chen and D. C. Montgomery, \Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics," Phys. Fluids 6, 1285, 1994.
    [17] Tamas I. Gombosi, \Gaskinetic Theory," Cambridge University Press, 1994.
    [18] X. He and L.-S. Luo, \Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56, 6811, 1997.
    [19] D. A. Wolf-Gladrow, \Lattice-Gas Cellular Automata and Lattice Boltzmann Models : An introduction," Springer, 2000.
    [20] P. A. Skordos, \Initial and boundary conditions for the lattice Boltzmann method," Phys. Rev. E 48, 4823, 1993.
    [21] D. R. Noble, S. Chen, J. G. Georgiadis and R. O. Buckius, \A consistent hydrodynamic boundary condition for the lattice Boltzmann method," Phys. Fluids 7, 203, 1995.
    [22] T. Inamuro, M. Yoshino and F. Ogino, \A non-slip boundary condition for lattice Boltzmann simulations," Phys. Fluids 7, 2928, 1995.
    [23] S. Hou. Q. Zou, S. Chen, G. Doolen and A. C. Cogley, \Simulation of cavity flow by the lattice Boltzmann method," J. Comp. Phys. 118, 329, 1995.
    [24] S. Chen, D. O. Martinez and R. Mei, \On boundary conditions in lattice Boltzmann methods," Phys. Fluids 8, 2527, 1996.
    [25] Q. Zou and X. He, \On pressure and velocity boundary conditions for the lattice Boltzmann BGK model," Phys. Fluids 9, 1591, 1997.
    [26] R. Maier, R. S. Bernard and D. W. Grunau, \Boundary conditions for the lattice Boltzmann method," Phys. Fluids 8, 1788, 1996.
    [27] U. Ghia, K. N. Ghia and C. T. Shin, \High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," J. Comp. Phys. 48, 387, 1982.
    [28] R. Mei, W. Shyy, D. Yu and L.-S. Luo, \Lattice Boltzmann method for 3-D flows with curved boundary," J. Comp. Phys. 161, 680, 2000.
    [29] F. M. White, \Viscous Fluid Flow - 2nd ed.," McGraw-Hill, New York, 1991.
    [30] D. R. Noble, J. G. Georgiadis and R. O. Buckius, \Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows,"
    J. Stat. Phys. 81, 17, 1995.

    QR CODE