簡易檢索 / 詳目顯示

研究生: 方柔尹
Fang, Jou-Yin
論文名稱: Desulfovibrio gigas中磷酸腺苷還原酶的聚合態與自我調節機制的關係探討
Biophysical Evidence of Oligomerization Suggests a Self-Regulation Mechanism of Adenylylsulfate Reductase from Desulfovibrio gigas
指導教授: 潘榮隆
Pan, Rong-Long
陳俊榮
Chen, Chun-Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 47
中文關鍵詞: 磷酸腺苷還原酶
外文關鍵詞: APS reductase, Adenylylsulfate reductase, APSR, Desulfovibrio gigas, D. gigas
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Adenylyl sulfate reductase (APSR or APS reductase, E.C.1.8.99.2), which was purified from the anaerobic sulfate-reducing bacterium Desulfovibrio gigas, played a key role to catalyze APS to sulfite in the dissimilatory sulfate reduction. Reduction of ferricyanide was used as reversed reaction of APSR for determining the formation of APS from AMP and sulfite. The overall structure of APSR contains six αβ-heterodimers that comprise one α-subunit and one β-subunit to form a hexamer structure. The C-terminus of the β-subunit (B105-B152) wrapped around α-subunit formed a functional unit, and the loop of the β-subunit C-terminus (B153-B167) inserted into the active channel of the α-subunit from another αβ-heterodimer. The hypothetic mode was suggested that APSR might self regulate the activity by the β-subunit C-terminus blocking the active site because the dynamic light scattering (DLS) data showed that the average diameter of APSR decreased from 12.81 to 8.11 nm after adding AMP, corresponding the size change from the hexamer to dimer structure. The sole disulfide of the structure is positioned at the tail of C-terminus of the β-subunit (Cys 156 and Cys 16), which was the key connection to keep the shape of the loop of the β-subunit C-terminus. After treating with 2-mercaptoethanol (β-me) to break the disulfide, the average diameter of APSR decreased from 12.81 to 8.47 nm. The results suggest that the dimer form could be the functional structure.


    ABSTRACT 1 CHAPTER 1 INTRODUCTION 1 1.1 SULFATE-REDUCING BACTERIA (SRB) 1 1.2 DISSIMILATORY SULFATE REDUCTION 2 1.3 MECHANISM OF ADENYLYLSULFATE REDUCTASE (APSR) 3 1.4 STRUCTURE OF APSR 3 1.5 SUBSTRATES BINDING CHANNEL AND BINDING SITE 4 CHAPTER 2 MATERIALS AND METHODS 6 2.1 GROWTH OF THE ORGANISM 6 2.2 PURIFICATION OF APSR FROM D.GIAGS 6 2.3 ACTIVITY ASSAY OF APSR 8 2.4 SDS PAGE 9 2.5 DYNAMIC LIGHT SCATTERING (DLS) 10 2.5.1 Theory of DLS 10 2.5.2 Sample Preparation of DLS 12 2.5.3 Characteristics of DLS 12 2.6 ATOMIC FORCE MICROSCOPY (AFM) 13 2.6.1 Theory of Atomic Force Microscopy 13 2.6.2 Device of Atomic Force Microscopy System 14 2.6.3 Operation Mode 15 CHAPTER 3 RESULTS AND DISCUSSIONS 16 3.1 GROWTH OF THE ORGANISM 16 3.2 THE PURIFICATION AND CHARACTERIZATION OF APSR 16 3.3 MODEL OF APSR SELF-REGULATION 17 3.4 CRYSTALLOGRAPHY 17 3.5 ULTRACENTRIFUGATION 18 3.6 IMAGE OF ATOMIC FORCE MICROSCOPE (AFM) 18 3.7 DYNAMIC LIGHT SCATTERING (DLS) 20 CHAPTER 4 CONCLUSSIONS 22 LIST OF TABLES 24 TABLE. 1 THE MEDIUM FOR GROWTH OF DESULFUVIBRIO GIGAS 24 TABLE. 2 WOLFE’S MIN. SOLUTION 24 TABLE. 3 SPECIFICATION OF NANO S 25 TABLE. 4 RECOMMENDED SAMPLE CONCENTRATIONS 25 TABLE. 5 DISPERSION LEVEL OF PARTICLES 25 TABLE. 6 THE ACTIVITY ASSAY DURING THE PROCESS OF PURIFICATION 25 TABLE. 7 THE MODIFIED CRYSTALLIZATION CONDITION 26 LIST OF FIGURES 27 FIG. 1 RESPIRATORY SULFATE REDUCTION 27 FIG. 2 BIOENERGETICS OF THE GROWTH OF DESULFOTOMACULUM ON LACTATE PLUSE SULFATE 27 FIG. 3 BIOENERGETICS OF THE GROWTH OF DESULFOVIBRIO GIGAS ON LACTATE PLUSE SULFATE 28 FIG. 4 FIGURE OF DESULFOVIBRIO GIGAS 28 FIG. 5 PATHWAY OF ASSIMILATORY SULFATE REDUCTION IN E. COLI 29 FIG. 6 ACTIVITY ASSAY OF APSR 29 FIG. 7 VISIBLE/ULTRAVIOLET SPECTRUM OF APSR 29 FIG. 8 STRUCTURE OF APSR IN D.GIGAS 30 FIG. 9 ELECTRON TRANSFER OF APSR IN D.GIGAS 31 FIG. 10 THE LOOP OF C-TERMINAL OF Β SUBUNIT BLOCKS THE SUBSTRATES-BINDING SITE 31 FIG. 11 OLIGOMER STRUCTURE OF APSR 32 FIG. 12 FIGURE OF DESULFOVIBRIO GIGAS 33 FIG. 13 MACRO-DEAE COLUMN 33 FIG. 14 SDS PAGE 33 FIG. 15 UV ABSORPTION OF ACTIVITY ASSAY 34 FIG. 16 UV SPECTRUM OF THE OXIDIZED APS REDUCTASE FROM D.GIGAS 34 FIG. 17 MONO Q 35 FIG. 18 EPR DATA OF APSR P1 AND P2 35 FIG. 19 DEVICE OF DYNAMIC LIGHT SCATTERING ZETASIZER NANO SERIES 36 FIG. 20 INTERACTIVE FORCE BETWEEN ATOMS 36 FIG. 21 DEVICE OF AFM SYSTEM 37 FIG. 22 MOLECULAR MASS ASSAY BY ULTRACENTRIFUGATION 38 FIG. 23 AFM DATA OF APSR P1 AND P2 40 FIG. 24 DLS DATA OF APSR IN D.GIGAS TREATED WITH AMP AND □ -MERCAPTOETHANOL 41 FIG. 25 DLS DATA OF APSR IN D.GIGAS TREATED WITH □ -MERCAPTOETHANOL 42 FIG. 26 DLS DATA OF APSR IN D.GIGAS TREATED WITH SULFITE 43 FIG. 27 DLS DATA OF APSR IN D.GIGAS IN DIFFERENT PH VALUE 43 FIG. 28 INITIAL SCREEN CONDITION 44 FIG. 29 MODIFIED CRYSTAL 44 REFERENCES 45

    □ Akagi, J. M. & Campbell, L. L. 1963 Inorganic pyrophosphate of Desulfovibrio desulfuricans. J. Bact. 86, 563-568.
    □ Barton, L. L., LeGall, J. & Peck, H. D. Jr 1972 Oxidative phosphorylation in the obligate anaerobe, Desulfovibrio gigas. In Horizons of bioenergetics (ed. A. San Pietro & H. Gest), pp. 33-51. New York: Academic Press
    □ Barton, L.L. (1995). Sulfate-reducing bacteria, Vol 8 (New York, Plenum Press).
    □ Bramlett, R.N., and Peck, H.D., Jr. (1975). Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris, pp. 2979-2986.
    □ Brioukhanov, A.L., and Netrusov, A.I. (2004). Catalase and superoxide dismutase: Distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry-Moscow+ 69, 949-962.
    □ Chiang, Y. L., 2009 Crystal structure of adenylylsulfate reductase from Desulfovibrio gigas suggests a potential self-regulation mechanism involving the C-terminus of the β-subunit. J. Bacteriol. doi:10.1128/JB.00583-09
    □ Fareleira, P., Santos, B.S., Antonio, C., Moradas-Ferreira, P., LeGall, J., Xavier, A.V., and Santos, H. (2003). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology-Sgm 149, 1513-1522.
    □ Fritz, G., Roth, A., Schiffer, A., Buchert, T., Bourenkov, G., Bartunik, H.D., Huber, H., Stetter, K.O., Kroneck, P.M.H., and Ermler, U. (2002b). Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. P Natl Acad Sci USA 99, 1836-1841.
    □ Kremer, D. R., Veenhuis, M., Fauque, G., Peck, H. D., Jr., Lampreia, J., Moura, J. J. G., and Hansen, T. A. (1988). Immunocytochemical localization of APS reductase and bisulfite reductase in three desulfovibrio species. Archives of Microbiology 150, 296-301.
    □ Le Gall, J. (1963). A New Species of Desulfovibrio. Journal of bacteriology 86, 1120.
    □ Liu, C.-L & Peck, H. D. Jr 1981 a Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp. J. Bact. 145, 966-973
    □ Lampreia, J., Pereira, A.S., and Moura, J.J.G. (1994). Adenylylsulfate Reductases from Sulfate-Reducing Bacteria. In Inorganic Microbial Sulfur Metabolism, pp. 241-260.
    □ Lampreia, J., Moura, I, Teixeira, M, Peck, HD Jr, Legall, J, Huynh, BH, Moura, JJ.(1990).The active centers of adenylylsulfate reductases from Desulfovibrio gigas characterization and spectroscopy studies.
    □ Matias, P.M., Pereira, I.A., Soares, C.M., and Carrondo, M.A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89, 292-329.
    □ Peck, H. D. Jr 1962 Comparative metabolism on inorganic sulfur compounds in microorganisms. Bact. Rev. 26, 67-94.
    □ Peck, H.D., Jr., Deacon, T.E., and Davidson, J.T. (1965). Studies on Adenosine 5'-Phosphosulfate Reductase from Desulfovibrio Desulfuricans and Thiobacillus Thioparus. I. the Assay and Purification. Biochimica et biophysica acta 96, 429-446.
    □ Peck, H. D., Jr 1982 Biochemistry of dissimilatory sulphate reduction. Phil. Trans. R. Soc. Lond. B 298, 443-466
    □ Pereia, A. S., Franco, R. 1996 Characterization of Representative Enzymes from a Sulfate Reducing Bacterium Implicated in the Corrosion of Steel. Biochemical and Biophysical Research Communications. 221, 414–421
    □ Postgate, J. R. 1979 The sulphate-reducing bacteria. Cambridge University Press
    □ Schiffer, A., Fritz, G., Kroneck, P.M.H., and Ermler, U. (2006). Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5 '-phosphosulfate reductase based on the structural characterization of different enzymatic states. Biochemistry 45, 2960-2967.
    □ Schneider, S.W., Lärmer, J. 1998 Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflügers Arch – Eur J Physiol 435:362–367
    □ Stanislav Kopriva, Thomas Bu¨ chert, Gu¨ nter Fritz, Marianne Suter, Markus Weber, Ru¨ diger Benda, Johann Schaller, Urs Feller, Peter Schu¨ rmann, Volker Schu¨ nemann, Alfred X. Trautwein, Peter M. H. Kroneck, and Christian Brunold (2001) Plant Adenosine 5-Phosphosulfate Reductase Is a Novel Iron-Sulfur Protein. The Journal of Biological Chemistry. Vol. 276, 42881–42886.
    □ Verhagen, M., I. M. Kooter, R. B. G. Wolbert, and W. R. Hagen. 1994. On the iron-sulfur cluster of adenosine phosphosulfate reductase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 221:831-837.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE