研究生: |
方柔尹 Fang, Jou-Yin |
---|---|
論文名稱: |
Desulfovibrio gigas中磷酸腺苷還原酶的聚合態與自我調節機制的關係探討 Biophysical Evidence of Oligomerization Suggests a Self-Regulation Mechanism of Adenylylsulfate Reductase from Desulfovibrio gigas |
指導教授: |
潘榮隆
Pan, Rong-Long 陳俊榮 Chen, Chun-Jung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 磷酸腺苷還原酶 |
外文關鍵詞: | APS reductase, Adenylylsulfate reductase, APSR, Desulfovibrio gigas, D. gigas |
相關次數: | 點閱:71 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Adenylyl sulfate reductase (APSR or APS reductase, E.C.1.8.99.2), which was purified from the anaerobic sulfate-reducing bacterium Desulfovibrio gigas, played a key role to catalyze APS to sulfite in the dissimilatory sulfate reduction. Reduction of ferricyanide was used as reversed reaction of APSR for determining the formation of APS from AMP and sulfite. The overall structure of APSR contains six αβ-heterodimers that comprise one α-subunit and one β-subunit to form a hexamer structure. The C-terminus of the β-subunit (B105-B152) wrapped around α-subunit formed a functional unit, and the loop of the β-subunit C-terminus (B153-B167) inserted into the active channel of the α-subunit from another αβ-heterodimer. The hypothetic mode was suggested that APSR might self regulate the activity by the β-subunit C-terminus blocking the active site because the dynamic light scattering (DLS) data showed that the average diameter of APSR decreased from 12.81 to 8.11 nm after adding AMP, corresponding the size change from the hexamer to dimer structure. The sole disulfide of the structure is positioned at the tail of C-terminus of the β-subunit (Cys 156 and Cys 16), which was the key connection to keep the shape of the loop of the β-subunit C-terminus. After treating with 2-mercaptoethanol (β-me) to break the disulfide, the average diameter of APSR decreased from 12.81 to 8.47 nm. The results suggest that the dimer form could be the functional structure.
□ Akagi, J. M. & Campbell, L. L. 1963 Inorganic pyrophosphate of Desulfovibrio desulfuricans. J. Bact. 86, 563-568.
□ Barton, L. L., LeGall, J. & Peck, H. D. Jr 1972 Oxidative phosphorylation in the obligate anaerobe, Desulfovibrio gigas. In Horizons of bioenergetics (ed. A. San Pietro & H. Gest), pp. 33-51. New York: Academic Press
□ Barton, L.L. (1995). Sulfate-reducing bacteria, Vol 8 (New York, Plenum Press).
□ Bramlett, R.N., and Peck, H.D., Jr. (1975). Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris, pp. 2979-2986.
□ Brioukhanov, A.L., and Netrusov, A.I. (2004). Catalase and superoxide dismutase: Distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry-Moscow+ 69, 949-962.
□ Chiang, Y. L., 2009 Crystal structure of adenylylsulfate reductase from Desulfovibrio gigas suggests a potential self-regulation mechanism involving the C-terminus of the β-subunit. J. Bacteriol. doi:10.1128/JB.00583-09
□ Fareleira, P., Santos, B.S., Antonio, C., Moradas-Ferreira, P., LeGall, J., Xavier, A.V., and Santos, H. (2003). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology-Sgm 149, 1513-1522.
□ Fritz, G., Roth, A., Schiffer, A., Buchert, T., Bourenkov, G., Bartunik, H.D., Huber, H., Stetter, K.O., Kroneck, P.M.H., and Ermler, U. (2002b). Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. P Natl Acad Sci USA 99, 1836-1841.
□ Kremer, D. R., Veenhuis, M., Fauque, G., Peck, H. D., Jr., Lampreia, J., Moura, J. J. G., and Hansen, T. A. (1988). Immunocytochemical localization of APS reductase and bisulfite reductase in three desulfovibrio species. Archives of Microbiology 150, 296-301.
□ Le Gall, J. (1963). A New Species of Desulfovibrio. Journal of bacteriology 86, 1120.
□ Liu, C.-L & Peck, H. D. Jr 1981 a Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp. J. Bact. 145, 966-973
□ Lampreia, J., Pereira, A.S., and Moura, J.J.G. (1994). Adenylylsulfate Reductases from Sulfate-Reducing Bacteria. In Inorganic Microbial Sulfur Metabolism, pp. 241-260.
□ Lampreia, J., Moura, I, Teixeira, M, Peck, HD Jr, Legall, J, Huynh, BH, Moura, JJ.(1990).The active centers of adenylylsulfate reductases from Desulfovibrio gigas characterization and spectroscopy studies.
□ Matias, P.M., Pereira, I.A., Soares, C.M., and Carrondo, M.A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89, 292-329.
□ Peck, H. D. Jr 1962 Comparative metabolism on inorganic sulfur compounds in microorganisms. Bact. Rev. 26, 67-94.
□ Peck, H.D., Jr., Deacon, T.E., and Davidson, J.T. (1965). Studies on Adenosine 5'-Phosphosulfate Reductase from Desulfovibrio Desulfuricans and Thiobacillus Thioparus. I. the Assay and Purification. Biochimica et biophysica acta 96, 429-446.
□ Peck, H. D., Jr 1982 Biochemistry of dissimilatory sulphate reduction. Phil. Trans. R. Soc. Lond. B 298, 443-466
□ Pereia, A. S., Franco, R. 1996 Characterization of Representative Enzymes from a Sulfate Reducing Bacterium Implicated in the Corrosion of Steel. Biochemical and Biophysical Research Communications. 221, 414–421
□ Postgate, J. R. 1979 The sulphate-reducing bacteria. Cambridge University Press
□ Schiffer, A., Fritz, G., Kroneck, P.M.H., and Ermler, U. (2006). Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5 '-phosphosulfate reductase based on the structural characterization of different enzymatic states. Biochemistry 45, 2960-2967.
□ Schneider, S.W., Lärmer, J. 1998 Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflügers Arch – Eur J Physiol 435:362–367
□ Stanislav Kopriva, Thomas Bu¨ chert, Gu¨ nter Fritz, Marianne Suter, Markus Weber, Ru¨ diger Benda, Johann Schaller, Urs Feller, Peter Schu¨ rmann, Volker Schu¨ nemann, Alfred X. Trautwein, Peter M. H. Kroneck, and Christian Brunold (2001) Plant Adenosine 5-Phosphosulfate Reductase Is a Novel Iron-Sulfur Protein. The Journal of Biological Chemistry. Vol. 276, 42881–42886.
□ Verhagen, M., I. M. Kooter, R. B. G. Wolbert, and W. R. Hagen. 1994. On the iron-sulfur cluster of adenosine phosphosulfate reductase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 221:831-837.