研究生: |
郭淑華 Kuo, Shu-Hua |
---|---|
論文名稱: |
插層法合成具超導調控性之二硼化鎂可撓複合材料 MgB2 Intercalated Muscovite with Dynamically Tunable Superconductivity |
指導教授: |
朱英豪
Chu, Ying-Hao |
口試委員: |
鄭澄懋
Cheng, Cheng-Maw 林俊源 Lin, Jiunn-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 插層法 、超導體 、複合材料 、可調變臨界溫度 、二硼化鎂 、雲母 |
外文關鍵詞: | Intercalation, Superconductivity, muscovite, MgB2, Alterable Critical Temperature, composite |
相關次數: | 點閱:68 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們開發了一種簡單的方法來研究壓力對材料在低維環境中超導性質的影響。透過氣相插層法(Gas-Phase Intercalation),我們將二硼化鎂(MgB2)奈米晶體插入到雲母(Muscovite)的層間,這些層間以弱的凡德瓦力(Van der Waals Force)連結,被視為二維腔體,很容易經過熱處理使 MgB2 以氣相蒸氣進入雲母的間隙中成核、成長。插層後的複合材料 MgB2-Muscovite 其超導臨界溫度(Critical Temperature, Tc)可以透過兩種不同的效應來調節:(1) 在雲母二維腔體的MgB2 會受到來自雲母層間的壓力,這個插層效應在本研究中產生的靜態壓力使 Tc 降低,且以不同的熱處理條件可調控 Tc (2) 因雲母的可撓性,我們示範了可透過彎曲此複合材料施加外應力於 MgB2 ,此動態彎曲效應進一步將 Tc 降低了 1.3 K,相當於約1.17 GPa 的壓力。 Tc 的變化與施加的壓力相關,這種變化證明雲母插層可以成為一個廣泛的平台,用於研究在壓力的作用下,不同功能材料的性質變化。本研究系統性地探討 MgB2-Muscovite 的結構、元素組成、形貌及超導性質,我們以 MgB2 作為插層系統壓力研究的範例,期望透過 MgB2 的結果展示,啟發更多雲母插層複合材料的開展。
In this study, a simple approach to studying the influence of pressure on the superconducting properties of materials in a reduced-dimension environment has been developed. By employing gas phase intercalation, we have inserted MgB2 nanocrystals into the muscovite interlayers, where can be viewed as 2D cavities. The superconducting critical temperature of MgB2-muscovite composites is modulated through two distinct effects: static pressure from the intercalation effect decreases with various process parameters; dynamic bending effect further reduces the critical temperature by 1.3K, corresponding to a pressure of 1.17 GPa. The change in the critical temperature exhibits a high correlation to the applied external stress. This variation proves that muscovite intercalation can be a universal platform for studying functional materials in reduced dimensions under external pressure in ambient conditions. This study uses MgB2 as an example of an intercalation system under pressure, aiming to inspire further development of mica intercalated composite materials through our results obtained from MgB2.
1. Milestones:Discovery of Superconductivity, 1911 https://ethw.org/Milestones:Discovery_of_Superconductivity,_1911.
2. The History of Superconductors http://superconductors.org/History.htm.
3. 邁斯納效應 (Meissner Effect) https://highscope.ch.ntu.edu.tw/wordpress/?p=19844.
4. Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Phys. Rev. 1957, 108 (5), 1175–1204.
5. Cooper, L. N. Phys. Rev. 1956, 104 (4), 1189–1190.
6. James William, R. Modern Physics from a to Z0; Wiley, 1994.
7. Bednorz, J. G.; Müller, K. A. Zeitschrift für Phys. B Condens. Matter 1986, 64 (2), 189–193.
8. Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Nature 2001, 410 (6824), 63–64.
9. Sun, D.; Minkov, V. S.; Mozaffari, S.; Sun, Y.; Ma, Y.; Chariton, S.; Prakapenka, V. B.; Eremets, M. I.; Balicas, L.; Balakirev, F. F. Nat. Commun. 2021, 12 (1), 6863.
10. Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Debessai, M.; Vindana, H.; Vencatasamy, K.; Lawler, K. V; Salamat, A.; Dias, R. P. Nature 2020, 586 (7829), 373–377.
11. Garisto, D. LK-99 isn’t a superconductor — how science sleuths solved the mystery https://www.nature.com/articles/d41586-023-02585-7.
12. Hofmann, P. Solid State Physics: An Introduction, 2nd ed.; Wiley-VCH Berlin, 2015.
13. Rafieazad, M.; Balcı, Ö.; Acar, S.; Somer, M. BORON 2017, 2 (2), 87-96,.
14. Ginzburg, V. L. Rev. Mod. Phys. 2004, 76 (3), 981–998.
15. Vinod, K.; Varghese, N.; Syamaprasad, U. Supercond. Sci. Technol. 2007, 20 (10), 31–45.
16. Choi, H. J.; Roundy, D.; Sun, H.; Cohen, M. L.; Louie, S. G. Nature 2002, 418 (6899), 758–760.
17. Goncharov, A. F.; Struzhkin, V. V. Phys. C Supercond. 2003, 385 (1), 117–130.
18. Goncharov, A. F.; Struzhkin, V. V; Gregoryanz, E.; Hu, J.; Hemley, R. J.; Mao, H.; Lapertot, G.; Bud’ko, S. L.; Canfield, P. C. Phys. Rev. B 2001, 64 (10), 100509.
19. Meletov, K. P.; Kulakov, M. P.; Kolesnikov, N. N.; Arvanitidis, J.; Kourouklis, G. A. J. Exp. Theor. Phys. Lett. 2002, 75 (8), 406–409.
20. Shukla, A.; Calandra, M.; d’Astuto, M.; Lazzeri, M.; Mauri, F.; Bellin, C.; Krisch, M.; Karpinski, J.; Kazakov, S. M.; Jun, J.; et al. Phys. Rev. Lett. 2003, 90 (9), 95506.
21. Mao, H.-K.; Chen, B.; Chen, J.; Li, K.; Lin, J.-F.; Yang, W.; Zheng, H. Matter Radiat. Extrem. 2016, 1 (1), 59–75.
22. Bassett, W. A. High Press. Res. 2009, 29 (2), 163–186.
23. Jayaraman, A. Rev. Mod. Phys. 1983, 55 (1), 65–108.
24. Li, J.; Fei, Y. Treatise on Geochemistry 2003, 2, 521–546.
25. Duffy, T. S. Nature 2011, 479 (7374), 480–481.
26. Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6 (3), 183–191.
27. Frisenda, R.; Niu, Y.; Gant, P.; Muñoz, M.; Castellanos-Gomez, A. npj 2D Mater. Appl. 2020, 4 (1), 38.
28. Barrer, R. M.; MacLeod, D. M. Trans. Faraday Soc. 1955, 51 (0), 1290–1300.
29. Yamanaka, S.; Nishihara, T.; Hattori, M.; Suzuki, Y. Mater. Chem. Phys. 1987, 17 (1), 87–101.
30. Pinnavaia, T. J. Science (80-. ). 1983, 220 (4595), 365–371.
31. Brindley, G. W.; Sempels, R. E. Clay Miner. 1977, 12 (3), 229–237.
32. Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys. 1981, 30 (2), 139–326.
33. Li, Z.; Li, D.; Wang, H.; Chen, P.; Pi, L.; Zhou, X.; Zhai, T. Small Methods 2021, 5 (9), 2100567.
34. Sangian, D.; Ide, Y.; Bando, Y.; Rowan, A. E.; Yamauchi, Y. Small 2018, 14 (33), 1800551.
35. Wang, M.; Williams, D.; Lahti, G.; Teshima, S.; Aguilar, D. D.; Perry, R.; Koski, K. J. 2D Mater. 2018, 5 (4), 45005.
36. Koski, K. J.; Wessells, C. D.; Reed, B. W.; Cha, J. J.; Kong, D.; Cui, Y. J. Am. Chem. Soc. 2012, 134 (33), 13773–13779.
37. Fan, X.; Xu, P.; Zhou, D.; Sun, Y.; Li, Y. C.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E. Nano Lett. 2015, 15 (9), 5956–5960.
38. Deemyad, S.; Tomita, T.; Hamlin, J. J.; Beckett, B. R.; Schilling, J. S.; Hinks, D. G.; Jorgensen, J. D.; Lee, S.; Tajima, S. Phys. C Supercond. 2003, 385 (1), 105–116.
39. Monteverde, M.; Núñez-Regueiro, M.; Rogado, N.; Regan, K. A.; Hayward, M. A.; He, T.; Loureiro, S. M.; Cava, R. J. Science (80-. ). 2001, 292 (5514), 75–77.
40. Lorenz, B.; Meng, R. L.; Chu, C. W. Phys. Rev. B 2001, 64 (1), 12507.
41. Tomita, T.; Hamlin, J. J.; Schilling, J. S.; Hinks, D. G.; Jorgensen, J. D. Phys. Rev. B 2001, 64 (9), 92505.
42. Tissen, V. G.; Nefedova, M. V; Kolesnikov, N. N.; Kulakov, M. P. Phys. C Supercond. 2001, 363 (3), 194–197.
43. Loa, I.; Syassen, K. Solid State Commun. 2001, 118 (6), 279–282.
44. Jia, F.; Su, J.; Song, S. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 471, 19–25.
45. Hafizah Che Ismail, N.; Hashim, F.; Md Akil, H.; Akhmar Salim Abdul Salim, Z. Mater. Today Proc. 2022, 66, 4084–4087.
46. Chen, Y.-C.; Cheng, Y.-C.; Ke, W.-E.; Chen, B.-S.; Kuo, C.-Y.; Yang, T.-Y.; Chueh, Y.-L.; Hu, Y.-J.; Lin, J.-Y.; Chu, Y.-H. Mater. Today Adv. 2023, 20, 100423.
47. 管狀燒結爐 https://tender.com.tw/h/ProductDetail?key=806928927180&productId=88939.
48. Eckert, M. Ann. Phys. 2012, 524 (5), A83–A85.
49. Diffraction Theory https://ocw.nthu.edu.tw/ocw/upload/132/news/陳福榮教授_電子顯微鏡1_ Chap_3_Diffraction Physics.pdf.
50. Bragg law https://www.britannica.com/science/Bragg-law.
51. Powder Diffraction FileTM (PDF®) https://www.icdd.com/pdfsearch/.
52. BRUKER D2 PHASER https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/d2-phaser.html.
53. Ryan, T. J. Chem. Educ. 2001, 78 (5), 613–616.
54. Inaba, K.; Kobayashi, S.; Uehara, K.; Okada, A.; Reddy, S.; Endo, T. Adv. Mater. Phys. Chem. 2013, 3, 72–89.
55. Harrington, G. F.; Santiso, J. J. Electroceramics 2021, 47 (4), 141–163.
56. NSRRC TPS 21A X-ray Nanodiffraction https://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&port=21A&pid=1003.
57. 同步加速器光源的產生.
58. Oxford Instruments. alpha300 R – Raman Imaging Microscope https://raman.oxinst.com/products/raman-microscopes/raman-imaging-alpha300r.
59. Analytical Methods in Geosciences https://www.collegesidekick.com/study-guides/labmethods/part-of-a-raman-spectrometer.
60. Tsikritsis, D.; Elizabeth J. Legge; Natalie A. Belsey. Analyst 2022, 147, 4642.
61. Terrones, O.; Olazar-Intxausti, J.; Anso, I.; Lorizate, M.; Nieto-Garai, J. A.; Contreras, F.-X. Int. J. Mol. Sci. 2023, 24 (3).
62. Mutsaers, M. 2018.
63. Choi, H. J.; Cohen, M. L.; Louie, S. G. Phys. C Supercond. 2003, 385 (1), 66–74.
64. Australia Facilities Microscopy. Scanning Electron Microscopy https://myscope.training/SEM_SEM_Basics.
65. JEOL. spherical aberration.
66. JEOL. astigmatism https://www.jeol.com/words/semterms/20121024.074458.php#gsc.tab=0.
67. JEOL. chromatic aberration https://www.jeol.com/words/semterms/20121024.011200.php#gsc.tab=0.
68. JEOL. stigmator https://www.jeol.com/words/semterms/20201020.111014.php#gsc.tab=0.
69. Thermo Fisher Scientific. SEM: Types of Electrons and the Information They Provide https://www.thermofisher.com/blog/materials/sem-signal-types-electrons-and-the-information-they-provide/.
70. AFM scanning modes.
71. 聚焦離子束顯微鏡(Focused Ion Beam, FIB) https://www.matek.com/zh-TW/services/index/FIB.
72. Jenq-Gong, D.; Kai-Jheng, W.; Su-Yueh, T. Instruments Today 2009, 170, 69–76.
73. 中华人民共和国国家标准 微束分析 電子探針顯微分析(EPMA)術語.
74. EPMA 的分光晶体.
75. EPMA https://www.cameca.com.cn/products/epma/epma-introduce.
76. WDS-RowlandCircle https://serc.carleton.edu/details/images/9512.html.
77. FONER, S. Rev. Sci. Instrum. 1959, 30 (7), 548–557.
78. Quantum Design PPMS https://www.qdusa.com/products/ppms.html.
79. Hao, R.; Liu, H.; Feng, Z. J. Phys. Conf. Ser. 2020, 1637 (1), 12061.
80. 從楞次定律(Lenz’s Law)到反電動勢 https://lutron1980.pixnet.net/blog/post/171777618.
81. John, C. Sci. Am. 1994, 271 (2), 46.
82. Ohanian; Hans. Physics, 2E Expande.; WW Norton, 1989.
83. Quantum Design SQUID Magnetometer MPMS®3 https://qdusa.com/products/mpms3.html.