研究生: |
呂宗翰 |
---|---|
論文名稱: |
多孔矽基板之製備及調控電雙層應用於海水淡化之研究 Manipulation of electrical double layer for desalination of sea water by porous silicon template |
指導教授: | 闕郁倫 |
口試委員: |
曾繁根
王祥辰 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 多孔矽 、金屬催化蝕刻 、海水淡化 、電雙層 |
外文關鍵詞: | porous silicon, metal-assisted chemical etching, desalination, electrical double layer |
相關次數: | 點閱:76 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據聯合國的研究顯示,在不久的將來會有三十五萬人活在缺水的環境裡。因此開發新的水資源是未來的一個重要課題。地球上的水資源有96.5%存在於海水中,將海水淡化成可飲用的水是解決水資源缺乏的方法之一。為了解決海水淡化成本過高的問題,現今全世界均致力於發展出高效率之海水淡化方法。
在2012年,曾繁根教授的研究團隊提出了一套利用控制奈米孔道中電雙層厚度以阻止離子通過孔道,借以達到海水淡化的方法。與現今產量最大,發展最成熟的逆滲透相比,此方法有較低的耗能。然而他們使用的陽極氧化鋁基板容易在實驗中產生破裂。在半導體工業中,矽基版有許多製作一維結構的方法。金屬輔助化學蝕刻法是其中一種具有步驟簡單且花費較少的方式。
本研究利用金屬輔助化學蝕刻法製作一維多孔矽基版,討論形成的多孔薄膜形貌與使用不同成分比例蝕刻液之間的關係,藉以達到孔隙率佳之薄膜形貌。多孔矽基版披覆一導電層後再由原子層沈積方式沉積一高介電係數之氧化鉿薄膜。此可調控電雙層疊合之海水淡化薄膜,經由使用0.5 M鹽水之擴散測試證明了此薄膜能有效阻擋離子通過。在施加2伏特的電壓時能減少20.95%的梨子擴散通過。另外,不同極性的電壓施加於薄膜時會有不同的阻擋離子效果,推測是由於不同離子擴散速率不同所導致的現象。此薄膜能夠穩定的運作超過60小時。顯示此薄膜有製作成可攜帶式鹽水淡化裝置的潛力。
Based on the research data from United Nations, there will be more than 2.5 million people live with shortage of fresh water resource in the near future. How to find sufficient water resource is big issue that attracts much attention. Seawater, the biggest (96.5 %) water reservoir on the earth. It seems that desalination provides a good ways to generating fresh water for solving this problem. In nowadays, researchers do lots of efforts that trying to develop new techniques that producing pure water much more efficiently.
In 2012, Prof. Tseng’s groups in NTHU announce a new desalination technical approach. They control the electrostatic charges attracted on the surface of nanochannels, leading the electrical double layer (EDL) being overlapped inside the pores of membrane to blocked ions pass through. However, the anode aluminum oxide (AAO) templates they use as membranes have poor mechanical property which might make its be broken once being at higher flowing/ pressure conditions. On the other hands, silicon is one of possible candidates that are well developed in semiconductor industry. One can fabricate 1D-nanostrucres (e.g. nanowire/nanorod arrays, porous-like structures) on Si wafers by using metal-assisted chemical etching (MACE), which has advantages of low cost and simple manufacturing.
In this study, fabrication of porous silicon templates with pores through whole wafer by MAC etching was performed. Several compositions (HF/H2O2) of etching solutions were examined for optimizing the morphologies of porous structures. Also, the atomic layer deposition (ALD) technique was used for depositing HfO2, a high dielectric strength material coated on porous channels for the applications of seawater desalination. The deionization properties of as-formed membranes with different bias were examined. The ions concentration was most reduced by 20.95 % using 2V applied bias. In fact, the deionized abilities of membranes were different by applying positive or negative bias due to the natural difference between cations and anions. These as-formed membranes can be continuously in operation without loss its deionized ability for 60 hrs. These Si-based deionized membranes assembly show potentials for application in future mobile desalination cells.
[1] Engelman, R., P. LeRoy, and P.A. International, Sustaining water: population and the future of renewable water supplies. 1993: Population Action International.
[2] Greenlee, L., et al., Reverse osmosis desalination: water sources, technology, and today's challenges. Water research, 2009. 43(9): p. 2317-2348.
[3] 黃裕升. 藉由控制電雙層疊合機制以達到低耗能高效率之去鹽淡化裝置. 國立清華大學, 2012.
[4] 邱昭源. 海水淡化處理方法規劃之研究—以新竹科學工業園區為例. 國立台灣大學, 2003.
[5] Humplik, T., et al., Nanostructured materials for water desalination. Nanotechnology, 2011. 22(29): p. 292001.
[6] Strathmann, H., Membrane separation processes: Current relevance and future opportunities. AIChE Journal, 2001. 47.
[7] 張淑惠. 探討電透析技術於海水淡化處理的特點及其處理效能. 朝陽科技大學, 2007.
[8] McHarg, J. and R. Truby, West coast researchers seek to demonstrate SWRO affordability. International Desalination and Water Reuse Quarterly, 2004. 14: p. 10-18.
[9] Melin, T. and R. Rautenbach, Membranverfahren. 2007: Springer London, Limited.
[10] Dimova-Malinovska, D., et al., Preparation of thin porous silicon layers by stain etching. Thin Solid Films, 1997. 297.
[11] Li, X. and P.W. Bohn, Metal-assisted chemical etching in HF/H[sub 2]O[sub 2] produces porous silicon. Applied Physics Letters, 2000. 77.
[12] Harada, Y., et al., Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. Journal of the American Chemical Society, 2001. 123(36): p. 8709-8717.
[13] Peng, K., et al., Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition. Advanced Functional Materials, 2003. 13.
[14] Kazuya, T. and M. Michio, Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochimica Acta, 2007. 53.
[15] Kuiqing, P., et al., Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution. Chemistry - A European Journal, 2006. 12.
[16] Asoh, H., S. Sakamoto, and S. Ono, Metal patterning on silicon surface by site-selective electroless deposition through colloidal crystal templating. Journal of colloid and interface science, 2007. 316(2): p. 547-552.
[17] Sachiko, O., O. Akihiko, and A. Hidetaka, Nanopatterning of silicon with use of self-organized porous alumina and colloidal crystals as mask. Electrochimica Acta, 2007. 52.
[18] Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53.
[19] Huang, Z., et al., Metal-assisted chemical etching of silicon: a review. Advanced materials (Deerfield Beach, Fla.), 2011. 23(2): p. 285-308.
[20] Chia-Lung, L., et al., Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. Journal of Materials Chemistry, 2008. 18.
[21] Kuiqing, P., et al., Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching. Advanced Functional Materials, 2008. 18.
[22] Chia-Yun, C., et al., Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature. Advanced Materials, 2008. 20.
[23] Zhipeng, H., et al., Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon. The Journal of Physical Chemistry C, 2010. 114.
[24] Kazuya, T. and M. Michio, Helical Nanoholes Bored in Silicon by Wet Chemical Etching Using Platinum Nanoparticles as Catalyst. Electrochemical and Solid-State Letters, 2005. 8.
[25] Tsujino, K. and M. Matsumura, Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst. Advanced Materials, 2005. 17.
[26] Bard, A.J. and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2001: Wiley.
[27] Gouy, G. Comt.Rend., 1909. 149(654).
[28] Chapman, D.L. Phil.Mag., 1913. 6(25): p. 475.
[29] Stern, O. Z.Electrochem, 1924. 30(508).
[30] Chiou, Y., et al., Effect of Al incorporation in the thermal stability of atomic-layer-deposited HfO2 for gate dielectric applications. Journal of The …, 2007.
[31] Lianto, P., et al., Vertical etching with isolated catalysts in metal-assisted chemical etching of silicon. Nanoscale, 2012. 4(23): p. 7532-7539.
[32] Lavoie, C., et al., Towards implementation of a nickel silicide process for CMOS technologies. Microelectronic Engineering, 2003. 70.
[33] Li, Y.-H. and G. Sandra, Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 1974. 38.