簡易檢索 / 詳目顯示

研究生: 江丞鋒
Chiang, Cheng-Feng
論文名稱: 探索並優化新型光聲與超音波複合系統中超音波影像品質以促進臨床應用
Exploring and Advancing Ultrasound Imaging Quality in a Novel OPUS (Optoacoustic and Ultrasound) Hybrid System
指導教授: 林曉均
口試委員: 李夢麟
LI, MENG-LIN
范景翔
Ching-Hsiang Fan
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 76
中文關鍵詞: 光聲成像超音波光聲超音波複合系統反卷積光聲斷層掃描
外文關鍵詞: Optoacoustic imaging, Ultrasound imaging, OPUS, Deconvolution, OAT
相關次數: 點閱:46下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,光聲成像技術蓬勃發展,結合光學與聲學優勢,具備無輻射、快速成像與分子辨識等特性,顯示其在醫學診斷上的高度潛力。近期提出的半球式光聲超音波複合系統(Optoacoustic Ultrasound, OPUS),整合了超音波與光聲影像模態,拓展其應用性。然而,目前OPUS系統中超音波影像仍受限於訊號強度與後處理技術的不足,影響整體影像品質。本研究針對新型OPUS系統的超音波成像模組進行深入分析,透過調控壓電晶體激發數量與空間複合(Compounding)策略,探討其對訊號強度、對比雜訊比(CNR)、解析度與視野(FOV)等影像品質指標的影響。此外,進一步引入理查森-露西(Richardson-Lucy)反卷積技術以強化影像清晰度與細節呈現。實驗設計包含搭載縫線之假體測試與健康受試者前臂影像實測,並採用新版數據擷取系統(DAQ)以提升取樣效能。結果顯示,增加激發晶體數雖提升了訊號強度與CNR,但會造成視野縮小;而應用反卷積處理後,解析度顯著提升,並有效抑制旁瓣假影。研究成果首次展示新型OPUS系統結合影像重建處理的潛力,顯示透過適當參數設定與後處理技術,可大幅提升影像品質與系統可行性,為未來臨床即時診斷與3D成像應用奠定基礎。


    In recent years, optoacoustic imaging has advanced rapidly, combining the strengths of optical and acoustic modalities to provide non-ionizing, fast, and molecular-level imaging—showing strong potential in medical diagnostics. A newly developed hemispherical hybrid optoacoustic ultrasound (OPUS) system integrates both imaging modes, broadening its clinical applications. However, ultrasound image quality in OPUS remains limited due to weak signal strength and insufficient post-processing.
    This study investigates the ultrasound module in a novel OPUS system. By adjusting the number of excited piezoelectric elements and applying spatial compounding, we examine their effects on signal intensity, contrast-to-noise ratio (CNR), resolution, and field of view (FOV). We also implement Richardson-Lucy deconvolution to enhance image clarity and detail.
    Experiments include phantom tests with surgical sutures and in vivo imaging of healthy forearms, using an upgraded data acquisition (DAQ) system for improved sampling. Results show that increasing excited elements enhances signal and CNR but narrows the FOV. Deconvolution improves resolution and reduces sidelobe artifacts, yielding clearer images.
    This is the first study to combine deconvolution with a next-generation OPUS system. The results demonstrate that optimized parameters and post-processing can significantly enhance image quality and clinical feasibility, paving the way for real-time diagnostics and 3D imaging.

    QR CODE