研究生: |
陳倬翊 Chen, Cho-Yi |
---|---|
論文名稱: |
運用代謝工程改質Pseudomonas putida S12用於生產FDCA Metabolic Engineering of Pseudomonas putida S12 for FDCA Production |
指導教授: |
胡育誠
Hu, Yu-Chen |
口試委員: |
沈若樸
Shen, Claire-Roapu 宋立瑜 Sung, Li-Yu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | FDCA 、HMF 、P. putida S12 、全細胞生物轉換法 、CRISPR 、λ-Red |
外文關鍵詞: | FDCA, HMF, P. putida S12, bio-transformation, CRISPR, λ-Red |
相關次數: | 點閱:129 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,許多研究開始著重於尋找石化原料的替代品,而其中又以FDCA最具有未來性,FDCA可替代塑膠的原料-聚對苯二甲酸乙二酯 (PET) 製程中所需的對苯二甲酸,對環境較PET更為友善。目前FDCA可由HMF氧化成HMFCA或DFF,再氧化成FFCA,最後氧化成FDCA,本研究以基因轉殖技術將文獻提及可生產FDCA的酵素HmfH、HMFO、AAO、UPO、CPO、PAMO及GOase基因分別接入載體,將其轉型入對有機溶劑具有高耐受性的Pseudomonas. putida S12表現不同的酵素,以全細胞生物轉換法將HMF轉化成FDCA。我們首先將含有酵素基因的質體分別轉型入P. putida中,並以強啟動子PHCE表現酵素與50 mM HMF反應,發現HmfH及HMFO可將HMF轉化成FDCA,其轉化率分別約為78.8 %及77.6 %,其餘酵素僅反應至HMFCA即終止。接著我們測試以ATc作為誘導劑的誘導型啟動子PTc表現前次結果無法生產FDCA的酵素,並以20及100 ng/ml的ATc誘導,但所有酵素反應依然止於HMFCA。由於目前的文獻僅GOase及HRP被提及可用E. coli生產,而P. putida與E. coli同為原核生物,因此接下來我們將GOase與HRP一同使用搭配不同的啟動子與信號肽,期望能解決HMFCA累積的問題,但仍然無法生產FDCA,因此我們推測這些酵素可能不適合於P. putida中表現。而為了將酵素基因嵌入P. putida染色體以降低篩選菌株所使用的抗生素成本,我們將三種CRISPR系統SpCas9、SaCas9及FnCas12a應用於P. putida中,發現其搭配λ-Red系統可成功嵌入外源基因,因此我們分別將可生產FDCA的HmfH及HMFO兩個酵素基因分別嵌入P. putida染色體中並與50 mM HMF反應,結果顯示HMF可成功被轉化成FDCA,其轉化率分別約為86.1 %及84.2 %。未來我們會繼續嘗試其他培養條件或酵素,期望能解決HMFCA累積的問題並提高FDCA產量,並設計去除CRISPR質體的系統,以增加菌株的穩定性。
Recently, FDCA becomes one of the most promising bio-based compound. It can be an alternative to the ingredient of PET and is more eco-friendly. FDCA can be produced by oxidizing HMF to HMFCA or DFF, then to FFCA, finally to FDCA. In this study, we expressed several enzymes such as HmfH, HMFO, AAO, UPO, CPO, PAMO and GOase for FDCA production in bacteria Pseudomonas putida S12 with high tolerance to organic solvent by bio-transformation. We first expressed enzymes by strong promoter P¬HCE and reacted with 50 mM HMF. HmfH and HMFO could successfully convert HMF to FDCA at the yield of ~78.8 % and 77.6 %, but others could only produce HMFCA. Next, we expressed enzymes that couldn’t work in previous result by inducible promoter PTc which could be induced by ATc and induced the expression by 20 and 100 ng/ml ATc, but the reaction still stopped at HMFCA. Because GOase and HRP were the only enzymes that could be expressed in E. coli in previous literatures, we then expressed GOase and HRP together combining different promoter and signal peptide. Unfortunately, HMFCA was still the main product. To integrate enzyme gene into the genome of P. putida, we applied 3 CRISPR system SpCas9, SaCas9 and FnCas12a in P. putida, and found that all of them could integrate foreign genes into the genome with the help of λ-Red system. Thus, we integrated HmfH and HMFO genes into its genome, and 50 mM HMF could be successfully transformed to FDCA at the yield of ~86.1 % and 84.2 %. For future work, we will try to optimize our culture condition or express other enzymes, hoping to solve the problem of HMFCA accumulation. Besides, we will design the plasmid curing system for elimination fo CRISPR plasmid to enhance the stability of strain.
Asad S, Khajeh K, Ghaemi N. 2011. Investigating the structural and functional effects of mutating Asn glycosylation sites of horseradish peroxidase to Asp. Appl Biochem Biotechnol 164(4):454-63.
Bertram R, Hillen W. 2008. The application of Tet repressor in prokaryotic gene regulation and expression. Microb Biotechnol 1(1):2-16.
Carlini C, Patrono P, Galletti AMR, Sbrana G, Zima V. 2005. Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Applied Catalysis A: General 289(2):197-204.
Carro J, Ferreira P, Rodriguez L, Prieto A, Serrano A, Balcells B, Arda A, Jimenez-Barbero J, Gutierrez A, Ullrich R and others. 2015. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J 282(16):3218-29.
Choosri W, Paukner R, Wuhrer P, Haltrich D, Leitner C. 2011. Enhanced production of recombinant galactose oxidase from Fusarium graminearum in E. coli. World J Microbiol Biotechnol 27(6):1349-53.
Chung M-E, Yeh I-H, Sung L-Y, Wu M-Y, Chao Y-P, Ng I-S, Hu Y-C. 2017. Enhanced Integration of Large DNA Into E. coli Chromosome by CRISPR/Cas9. Biotechnol Bioeng 114:172-183.
Cook TB, Rand JM, Nurani W, Courtney DK, Liu SA, Pfleger BF. 2018. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol 45(7):517-527.
Copeland MF, Politz MC, Pfleger BF. 2014. Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Curr Opin Biotechnol 29:46-54.
Dammeyer T, Steinwand M, Krüger S-C, Dübel S, Hust M, Timmis KN. 2011. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microbial Cell Factories 10:11.
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602-7.
Dijkman WP, Groothuis DE, Fraaije MW. 2014. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Ed Engl 53(25):6515-8.
Elmore JR, Furches A, Wolff GN, Gorday K, Guss AM. 2017. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab Eng Commun 5:1-8.
Escalettes F, Turner NJ. 2008. Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases. Chembiochem 9(6):857-60.
Foti M, Medici R, Ruijssenaars HJ. 2013. Biological production of monoethanolamine by engineered Pseudomonas putida S12. J Biotechnol 167(3):344-9.
Fraaije MW, Wu J, Heuts DP, van Hellemond EW, Spelberg JH, Janssen DB. 2005. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol 66(4):393-400.
Asad S, Khajeh K, Ghaemi N. 2011. Investigating the structural and functional effects of mutating Asn glycosylation sites of horseradish peroxidase to Asp. Appl Biochem Biotechnol 164(4):454-63.
Bertram R, Hillen W. 2008. The application of Tet repressor in prokaryotic gene regulation and expression. Microb Biotechnol 1(1):2-16.
Carlini C, Patrono P, Galletti AMR, Sbrana G, Zima V. 2005. Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Applied Catalysis A: General 289(2):197-204.
Carro J, Ferreira P, Rodriguez L, Prieto A, Serrano A, Balcells B, Arda A, Jimenez-Barbero J, Gutierrez A, Ullrich R and others. 2015. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J 282(16):3218-29.
Choosri W, Paukner R, Wuhrer P, Haltrich D, Leitner C. 2011. Enhanced production of recombinant galactose oxidase from Fusarium graminearum in E. coli. World J Microbiol Biotechnol 27(6):1349-53.
Chung M-E, Yeh I-H, Sung L-Y, Wu M-Y, Chao Y-P, Ng I-S, Hu Y-C. 2017. Enhanced Integration of Large DNA Into E. coli Chromosome by CRISPR/Cas9. Biotechnol Bioeng 114:172-183.
Cook TB, Rand JM, Nurani W, Courtney DK, Liu SA, Pfleger BF. 2018. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol 45(7):517-527.
Copeland MF, Politz MC, Pfleger BF. 2014. Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Curr Opin Biotechnol 29:46-54.
Dammeyer T, Steinwand M, Krüger S-C, Dübel S, Hust M, Timmis KN. 2011. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microbial Cell Factories 10:11.
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602-7.
Dijkman WP, Groothuis DE, Fraaije MW. 2014. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Ed Engl 53(25):6515-8.
Elmore JR, Furches A, Wolff GN, Gorday K, Guss AM. 2017. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab Eng Commun 5:1-8.
Escalettes F, Turner NJ. 2008. Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases. Chembiochem 9(6):857-60.
Foti M, Medici R, Ruijssenaars HJ. 2013. Biological production of monoethanolamine by engineered Pseudomonas putida S12. J Biotechnol 167(3):344-9.
Fraaije MW, Wu J, Heuts DP, van Hellemond EW, Spelberg JH, Janssen DB. 2005. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol 66(4):393-400.
Gong T, Liu R, Che Y, Xu X, Zhao F, Yu H, Song C, Liu Y, Yang C. 2016. Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microb Biotechnol 9(6):792-800.
Graf N, Altenbuchner J. 2011. Development of a method for markerless gene deletion in Pseudomonas putida. Appl Environ Microbiol 77(15):5549-52.
HARTMANS S, SMITS JP, WERF MJVD, VOLKERING F, BONT JAMD. 1989. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X. Applied and Environment Microbiology 55(11):2850-2855.
Hoffmann J, Altenbuchner J. 2015. Functional Characterization of the Mannitol Promoter of Pseudomonas fluorescens DSM 50106 and Its Application for a MannitolInducible Expression System for Pseudomonas putida KT2440. PLoS One 10(7).
Horvath P, Barrangou R. 2010. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 327(5962):167-170.
Hossain GS, Yuan H, Li J, Shin HD, Wang M, Du G, Chen J, Liu L. 2017. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural. Appl Environ Microbiol 83(1).
Houck MM, II REM, Huff RA. 2001. POLY(TRIMETHYLENE TEREPHTHALATE): A "NEW" TYPE OF POLYESTER FIBRE. Problems of Forensic Sciences XLVI:217-221.
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227-9.
Ishige T, Honda K, Shimizu S. 2005. Whole organism biocatalysis. Curr Opin Chem Biol 9(2):174-80.
Isken S, Santos PMAC, Bont JAMd. 1997. Effect of solvent adaptation on the antibiotic resistance in Pseudomonas putida S12. Applied Microbiology and Biotechnology 48(5):642-647.
Jain A, Jonnalagadda SC, Ramanujachary KV, Mugweru A. 2015. Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catalysis Communications 58:179-182.
Japu C, Martínez de Ilarduya A, Alla A, Muñoz-Guerra S. 2014. Bio-based poly(ethylene terephthalate) copolyesters made from cyclic monomers derived from tartaric acid. Polymer 55(10):2294-2304.
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506-14.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337(6096).
Kamm B. 2007. Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed Engl 46(27):5056-8.
Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. 2010a. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresour Technol 101(16):6291-6.
Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. 2010b. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci U S A 107(11):4919-24.
Kuhlman TE, Cox EC. 2010. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 38(6):e92.
Kumar H, Fraaije M. 2017. Conversion of Furans by Baeyer-Villiger Monooxygenases. Catalysts 7(6):179.
Laemmli UK, Beguin F, Gujer-Kellenberger G. 1970. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J Mol Biol 47(1):69-85.
Lee Y, Oh S, Park W. 2009. Inactivation of the Pseudomonas putida KT2440 dsbA gene promotes extracellular matrix production and biofilm formation. FEMS Microbiol Lett 297(1):38-48.
Mali P, Esvelt KM, Church GM. 2013. Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957-63.
McKenna SM, Leimkühler S, Herter S, Turner NJ, Carnell AJ. 2015. Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chemistry 17(6):3271-3275.
McKenna SM, Mines P, Law P, Kovacs-Schreiner K, Birmingham WR, Turner NJ, Leimkühler S, Carnell AJ. 2017. The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC). Green Chemistry 19(19):4660-4665.
Molina-Espeja P, Ma S, Mate DM, Ludwig R, Alcalde M. 2015. Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enzyme Microb Technol 73-74:29-33.
Mosberg JA, Lajoie MJ, Church GM. 2010. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186(3):791-9.
Nijkamp K, van Luijk N, de Bont JA, Wery J. 2005. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69(2):170-7.
NUELL MJ, FANG G-H, AXLEY MJ, KENIGSBERG P, HAGER LP. 1988. Isolation and Nucleotide Sequence of the Chloroperoxidase Gene from Caldariomyces fumago. JOURNAL OF BACTERIOLOGY 170(2):1007-1011.
P. W, Dijkman, Fraaije MW. 2014. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Applied and Environmental Microbiology 80(3):1082-1090.
Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M. 2009. Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84(5):885-97.
Petinakis E, Yu L, Simon G, De K. 2013. Natural Fibre Bio-Composites Incorporating Poly(Lactic Acid).
Poo H, Song JJ, Hong S-P, Choi Y-H, Yun SW, Kim J-H, Lee SC, Lee S-G, Sung MH. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-α. Kluwer Academic Publishers 24:1185-1189.
Prather K. 2004. Integrated Chemical Engineering (ICE) Topics: Biocatalysis Lecture #5 – Using Whole Cells as Biocatalysts Why When, Growth vs Conversion (Screening).
Radder AM, Leenders H, Blitterswijk CAv. 1995. Bone-bonding behaviour of poly(ethylene oxide)-polybutylene terephthalate copolymer coatings and bulk implants: a comparative study. Biomaterials 16(7):507-513.
Ruiz-Duenas FJ, Ferreira P, Martinez MJ, Martinez AT. 2006. In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme. Protein Expr Purif 45(1):191-9.
Schierle CF, Berkmen M, Huber D, Kumamoto C, Boyd D, Beckwith J. 2003. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 185(19):5706-13.
Sharan SK, Thomason LC, Kuznetsov SG, Court DL. 2009. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4(2):206-23.
Siankevich S, Savoglidis G, Fei Z, Laurenczy G, Alexander DTL, Yan N, Dyson PJ. 2014. A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. Journal of Catalysis 315:67-74.
Summers RM, Louie TM, Yu CL, Subramanian M. 2011. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology 157(Pt 2):583-92.
T.Werpy, G.Petersen. 2014. Top Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. (1):26-28.
Tan G-Y, Chen C-L, Li L, Ge L, Wang L, Razaad I, Li Y, Zhao L, Mo Y, Wang J-Y. 2014. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers 6(3):706-754.
Tao F, Liu Y, Luo Q, Su F, Xu Y, Li F, Yu B, Ma C, Xu P. 2011. Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresour Technol 102(20):9380-7.
Torres Pazmino DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW. 2009. Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases. Chembiochem 10(16):2595-8.
Tyo KE, Ajikumar PK, Stephanopoulos G. 2009. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27(8):760-5.
van Deurzen MPJ, van Rantwijk F, Sheldon RA. 2006. Chloroperoxidase-Catalyzed Oxidation of 5-Hydroxymethylfurfural. Journal of Carbohydrate Chemistry 16(3):299-309.
Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE. 2006. A Two Step Chemo-biotechnological Conversion of Polystyrene to a Biodegradable Thermoplastic. Environ. Sci. Technol 40:2433-2437.
Wery J, Hidayat B, Kieboom J, de Bont JA. 2001. An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem 276(8):5700-6.
Wierckx N, Koopman F, Bandounas L, de Winde JH, Ruijssenaars HJ. 2010. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate. Microb Biotechnol 3(3):336-43.
Yi G, Teong SP, Li X, Zhang Y. 2014. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid. ChemSusChem 7(8):2131-5.
Yuan H, Li J, Shin HD, Du G, Chen J, Shi Z, Liu L. 2018. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Bioresour Technol 247:1184-1188.
Zhang J, Li J, Tang Y, Lin L, Long M. 2015. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydr Polym 130:420-8.
HARTMANS S, SMITS JP, WERF MJVD, VOLKERING F, BONT JAMD. 1989. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X. Applied and Environment Microbiology 55(11):2850-2855.
Horvath P, Barrangou R. 2010. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 327(5962):167-170.
Hossain GS, Yuan H, Li J, Shin HD, Wang M, Du G, Chen J, Liu L. 2017. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural. Appl Environ Microbiol 83(1).
Houck MM, II REM, Huff RA. 2001. POLY(TRIMETHYLENE TEREPHTHALATE): A "NEW" TYPE OF POLYESTER FIBRE. Problems of Forensic Sciences XLVI:217-221.
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227-9.
Ishige T, Honda K, Shimizu S. 2005. Whole organism biocatalysis. Curr Opin Chem Biol 9(2):174-80.
Jain A, Jonnalagadda SC, Ramanujachary KV, Mugweru A. 2015. Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catalysis Communications 58:179-182.
Japu C, Martínez de Ilarduya A, Alla A, Muñoz-Guerra S. 2014. Bio-based poly(ethylene terephthalate) copolyesters made from cyclic monomers derived from tartaric acid. Polymer 55(10):2294-2304.
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506-14.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337(6096).
Kamm B. 2007. Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed Engl 46(27):5056-8.
Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. 2010a. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresour Technol 101(16):6291-6.
Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. 2010b. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci U S A 107(11):4919-24.
Kumar H, Fraaije M. 2017. Conversion of Furans by Baeyer-Villiger Monooxygenases. Catalysts 7(6):179.
Laemmli UK, Beguin F, Gujer-Kellenberger G. 1970. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J Mol Biol 47(1):69-85.
Lee Y, Oh S, Park W. 2009. Inactivation of the Pseudomonas putida KT2440 dsbA gene promotes extracellular matrix production and biofilm formation. FEMS Microbiol Lett 297(1):38-48.
Mali P, Esvelt KM, Church GM. 2013. Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957-63.
McKenna SM, Leimkühler S, Herter S, Turner NJ, Carnell AJ. 2015. Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chemistry 17(6):3271-3275.
McKenna SM, Mines P, Law P, Kovacs-Schreiner K, Birmingham WR, Turner NJ, Leimkühler S, Carnell AJ. 2017. The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC). Green Chemistry 19(19):4660-4665.
Molina-Espeja P, Ma S, Mate DM, Ludwig R, Alcalde M. 2015. Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enzyme Microb Technol 73-74:29-33.
Nijkamp K, van Luijk N, de Bont JA, Wery J. 2005. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69(2):170-7.
NUELL MJ, FANG G-H, AXLEY MJ, KENIGSBERG P, HAGER LP. 1988. Isolation and Nucleotide Sequence of the Chloroperoxidase Gene from Caldariomyces fumago. JOURNAL OF BACTERIOLOGY 170(2):1007-1011.
P. W, Dijkman, Fraaije MW. 2014. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Applied and Environmental Microbiology 80(3):1082-1090.
Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M. 2009. Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84(5):885-97.
Petinakis E, Yu L, Simon G, De K. 2013. Natural Fibre Bio-Composites Incorporating Poly(Lactic Acid).
Poo H, Song JJ, Hong S-P, Choi Y-H, Yun SW, Kim J-H, Lee SC, Lee S-G, Sung MH. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-α. Kluwer Academic Publishers 24:1185-1189.
Prather K. 2004. Integrated Chemical Engineering (ICE) Topics: Biocatalysis Lecture #5 – Using Whole Cells as Biocatalysts Why When, Growth vs Conversion (Screening).
Radder AM, Leenders H, Blitterswijk CAv. 1995. Bone-bonding behaviour of poly(ethylene oxide)-polybutylene terephthalate copolymer coatings and bulk implants: a comparative study. Biomaterials 16(7):507-513.
Ruiz-Duenas FJ, Ferreira P, Martinez MJ, Martinez AT. 2006. In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme. Protein Expr Purif 45(1):191-9.
Schierle CF, Berkmen M, Huber D, Kumamoto C, Boyd D, Beckwith J. 2003. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 185(19):5706-13.
Siankevich S, Savoglidis G, Fei Z, Laurenczy G, Alexander DTL, Yan N, Dyson PJ. 2014. A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. Journal of Catalysis 315:67-74.
Summers RM, Louie TM, Yu CL, Subramanian M. 2011. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology 157(Pt 2):583-92.
T.Werpy, G.Petersen. 2014. Top Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. (1):26-28.
Tan G-Y, Chen C-L, Li L, Ge L, Wang L, Razaad I, Li Y, Zhao L, Mo Y, Wang J-Y. 2014. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers 6(3):706-754.
Tao F, Liu Y, Luo Q, Su F, Xu Y, Li F, Yu B, Ma C, Xu P. 2011. Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresour Technol 102(20):9380-7.
Torres Pazmino DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW. 2009. Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases. Chembiochem 10(16):2595-8.
van Deurzen MPJ, van Rantwijk F, Sheldon RA. 2006. Chloroperoxidase-Catalyzed Oxidation of 5-Hydroxymethylfurfural. Journal of Carbohydrate Chemistry 16(3):299-309.
Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE. 2006. A Two Step Chemo-biotechnological Conversion of Polystyrene to a Biodegradable Thermoplastic. Environ. Sci. Technol 40:2433-2437.
Wery J, Hidayat B, Kieboom J, de Bont JA. 2001. An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem 276(8):5700-6.
Wierckx N, Koopman F, Bandounas L, de Winde JH, Ruijssenaars HJ. 2010. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate. Microb Biotechnol 3(3):336-43.
Xu Y, Tao F, Ma C, Xu P. 2013. New Constitutive Vectors: Useful Genetic Engineering Tools for Biocatalysis. Applied and Environmental Microbiology 79(8):2836-2840.
Yi G, Teong SP, Li X, Zhang Y. 2014. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid. ChemSusChem 7(8):2131-5.
Yuan H, Li J, Shin HD, Du G, Chen J, Shi Z, Liu L. 2018. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Bioresour Technol 247:1184-1188.
Zhang J, Li J, Tang Y, Lin L, Long M. 2015. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydr Polym 130:420-8.