簡易檢索 / 詳目顯示

研究生: 劉冠麟
Liu, Kuan-Lin
論文名稱: 利用螢光上轉換光譜技術研究光收成共聚物之能量轉移過程
指導教授: 陳益佳
Chen, I-Chia
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 129
中文關鍵詞: 能量傳遞
外文關鍵詞: energy transfer
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用螢光上轉換技術,研究一系列以矽烷基 (SiMe2) 作為間隙物且具有立體規則性 (regioregular) 之光收成共聚物 (D1,3A)m,其中給體D與受體A分別為4,4□-divinylbiphenyl以及4,4□-divinylstilbene。由於單一矽烷基與π-系統沒有電子共軛,可以視為絕緣間隙物,聚合物的光物理性質會類似於其相對應的單體,而烷基則可以增加聚合物在有機溶劑中的溶解度。以266 nm光源激發,給體單體之螢光訊號在最初有一個迅速的 (~0.1 ps) 上升成分 (τ1),接著以雙自然指數衰減,其時間常數分別為數十個與數百個皮秒 (τ2,3),τ1指派為Sn→S1的內轉換而τ2,3則是分別為構型緩解 (平面化) 以及S1激發態的生命期,其中τ2與溶劑的粘度呈現出線性關係,證實在S1激發態構型緩解為主要的緩解途徑。當激發 (D1,3A)m內部的給體部分,給體□受體之能量傳遞皆相當有效,飛秒時間解析螢光指出 (D3A)m與 (DA)m中能量傳遞的速率分別為 (0.3 ps)-1以及 (0.6 ps)-1。(D3A)m中所觀察到的能量傳遞速率可由F□rster理論良好地預測,顯示能量傳遞主要是透過偶極–偶極作用力。然而 (D3A)m與 (DA)m中能量傳遞速率的差異,則暗示兩種共聚物內部的給體–受體之間具有不同的偶合作用力。最後,由於共聚物主鍊容易摺疊,(D3A)m與 (DA)m內部皆包含分子內聚集體,其能量淬息速率分別約為 (5 ps)-1與 (7 ps)-1。本實驗結果顯示以矽烷基為間隙物的小分子或是共聚物,由於合成相當簡易與迅速的能量傳遞速率,在光收成材料之應用方面具有很好的發展潛力。


    We used fluorescence up-conversion technique to investigate a series of regioregular silylene-spaced alternating donor-acceptor copolymer (D1,3A)m. Here D and A denote 4,4□-divinylbiphenyl and 4,4□-divinylstilbene, respectively. Silylene group can prevent over-extended conjugation between the chromophores in the polymer so that the photophysical properties of the polymer can be tuned. The alkyl substituents on silicon render the polymer more soluble in organic solvents. With 266 nm excitation the fluorescence curves of donor monomer exhibit a rise time constant □100 fs, and two decay time constants, 7-65 ps and □1 ns. We attribute the former rise to internal conversion from Sn to the S1 state, and the latter decay to geometric relaxation and the lifetime of the S1 state. Only the tens of picosecond decay shows a dependence on the solvent viscosity, indicating that the torsional motion dominates the relaxation. Upon excitation of donor moieties in (D3A)m, the fluorescence is almost exclusively from the acceptor regardless of the excitation wavelength, indicating an efficient energy transfer between donor and acceptor. Femtosecond time-resolved fluorescence indicates a rate (0.3 ps)-1 and (0.6 ps)-1 for energy transfer between S1 states of the donor and the acceptor is observed in (D3A)m and (DA)m, respectively. The observed energy transfer rate in (D3A)m is well described by the F□rster theory, indicating that dipole–dipole interaction dominates the energy transfer process. The discrepancy between the energy transfer rates observed in (D3A)m and (DA)m implies the coupling between donor and acceptor is different. Finally, intramolecular aggregation is observed in both (D3A)m and (DA)m, with rates (5 ps)-1 and (7 ps)-1 respectively, of energy transfer to the aggregates. The experimental results show that silylene-spaced copolymers are promising in the application of light-harvesting materials from the ease of preparation and the ultrarapid rate of energy transfer.

    目錄 摘要.................................................................................................................. i 謝誌.................................................................................................................. iii 目錄.................................................................................................................. iv 示意圖.............................................................................................................. vii 表目錄.............................................................................................................. viii 圖目錄.............................................................................................................. x 第一章 前言.................................................................................................... 1 1.1 飛秒雷射光譜簡介............................................................................. 1 1.2 實驗目的............................................................................................. 2 References................................................................................................. 4 第二章 實驗.................................................................................................... 6 2.1 時間相關光子計數系統..................................................................... 6 2.1.1 原理............................................................................................ 6 2.1.2 鑑別器........................................................................................ 8 2.1.2.1 前緣式鑑別器................................................................... 8 2.1.2.2 分數式鑑別器................................................................... 9 2.2 螢光上轉換系統................................................................................. 10 2.2.1 基本概念.................................................................................... 10 2.2.2 相位匹配.................................................................................... 10 2.2.3 上轉換過程的量子效率............................................................ 12 2.2.4 上轉換訊號的譜帶寬度............................................................ 13 2.2.5 時間解析度................................................................................ 14 2.3 儀器與實驗架設................................................................................. 18 2.3.1 穩態紫外-可見光吸收光譜與螢光光譜儀.............................. 18 2.3.2 雷射光源.................................................................................... 18 2.3.2.1 泵光源Millennia.............................................................. 18 2.3.2.2 種子雷射Mai Tai............................................................. 18 2.3.3 二倍頻及三倍頻光源................................................................ 19 2.3.3 時間相關光子計數系統............................................................ 20 2.3.4 螢光上轉換系統........................................................................ 20 2.4 樣品..................................................................................................... 22 2.4.1 給體分子.................................................................................... 22 2.4.1.1 理論計算............................................................................... 22 2.4.2 光收成共聚物 (D3A)m、(DA)m與D3........................................ 23 2.4.2.1 理論計算........................................................................... 24 References................................................................................................. 25 第三章 給體分子............................................................................................ 37 3.1 文獻回顧............................................................................................. 37 3.2 實驗結果............................................................................................. 40 3.2.1 穩態光譜.................................................................................... 40 3.2.2 理論計算.................................................................................... 40 3.2.3 螢光衰減曲線以及動力學模型................................................ 41 3.3 討論..................................................................................................... 43 3.4 結論..................................................................................................... 48 References................................................................................................. 49 第四章 光收成共聚物 (D3A)m與參考模型分子D3..................................... 64 4.1 文獻回顧............................................................................................. 64 4.2 實驗結果............................................................................................. 68 4.2.1 穩態吸收及螢光光譜................................................................ 68 4.2.2 時間解析螢光............................................................................ 70 4.3 討論..................................................................................................... 75 4.3.1 (D3A)m與D3之能量傳遞過程................................................... 75 4.3.2 能量傳遞機制............................................................................ 76 4.4 結論..................................................................................................... 82 References................................................................................................. 83 第五章 光收成共聚物 (DA)m....................................................................... 109 5.1 動機..................................................................................................... 109 5.2 實驗結果............................................................................................. 109 5.2.1 穩態吸收及螢光光譜................................................................ 110 5.2.2 時間解析螢光............................................................................ 111 5.3 討論..................................................................................................... 115 5.3.1 (DA)m之能量傳遞過程.............................................................. 115 5.3.2 能量傳遞機制............................................................................ 116 5.4 結論..................................................................................................... 119

    (1) K□hlbrandt, W.; Wang, D. N. Nature 1991, 350, 130.
    (2) K□hlbrandt, W. Nature 1995, 374, 497.
    (3) McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Issacs, N. W. Nature 1995, 374, 517.
    (4) Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry; Worth Publishers Inc.: New York, 1993.
    (5) Gr□zel, M., Ed. Energy Resources through Photochemistry and Catalysis; Academic Press: New York, 1983.
    (6) Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S.-C.; Moore, A. L.; Gust, D.; Moore, T. A. Nature 1997, 385, 239.
    (7) Chang, C.-W.; Chou, C.-K.; Chang, I.-Y.; Lee, Y.-P.; Diau, E. W.-G. J. Phys. Chem. C 2007, 111, 13288.
    (8) Seth, J.; Palaniappan, V.; Johnson, T. E.; Prathapan, S.; Lindsey, J. S.; Bocian, D. F. J. Am. Chem. Soc. 1994, 116, 10578.
    (9) Denti, G.; Campagna, S.; Serroni, S.; Ciano, M.; Balzani, V. J. Am. Chem. Soc. 1992, 114, 2944.
    (10) Webber, S. E. Chem. Rev. 1990, 90, 1469.
    (11) Aida, T.; Jiang, D.-L. J. Am. Chem. Soc. 1998, 120, 10895.
    (12) Peng, X.; Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Hwang, I.-W.; Ahn, T. K.; Kim. D.; Osuka, A. J. Am. Chem. Soc. 2004, 126, 4468.
    (13) Adronov, A.; Gilat, S. L.; Fr□chet, J. M. J.; Ohta, K. ; Neuwahl, F. V. R.; Fleming G. R. J. Am. Chem. Soc. 2000, 122, 1175.
    (14) Rhee, H.; Joo. T.; Aratani, N.; Osuka, A.; Cho, S.; Kim D. J. Chem. Phys. 2006, 125, 074902.
    (15) Fleming, C. N.; Maxwell, K. A.; DeSimone, J. M.; Meyer, T. J.; Papanikolas, J. M. J. Am. Chem. Soc. 2001, 123, 10336.
    (16) Faure, S.; Stern, C.; Guilard, R.; Harvey, P. D. J. Am. Chem. Soc. 2004, 126, 1253.
    (17) Cheng, Y.-J.; Hwu, T.-Y.; Hsu, J.-H.; Luh, T.-Y. Chem. Comm. 2002, 1978
    (18) Luh, T.-Y.; Cheng, Y.-J Chem. Comm. 2006, 4669.
    (19) Wang, H.-W.; Cheng, Y.-J.; Chen, C.-H.; Lim, T.-S.; Fann, W.; Lin, C.-L.; Chang, Y.-P.; Lin, K.-C.; Luh, T.-Y. Macromolecules 2007, 40, 2666.
    (20) Shizuka, H.; Kira, M.; Uchida, T. J. Am. Chem. Soc. 1973, 95, 6826.
    (21) Mori, A.; Takahisa, E.; Kajiro, H.; Nishihara, Y.; Hiyama, T. Macromolecules 2000, 33, 1115.
    (22) Wang, H.-W.; Yeh, M.-Y.; Chen, C.-H.; Lim, T.-S.; Fann, W.; Luh, T.-Y. Macromolecules 2008, 41, 2762.
    (23) Chen, R.-M.; Chien, K.-T.; Wong, K. T.; Jin, B.-Y.; Luh, T.-Y. J. Am. Chem. Soc. 1997, 119, 11321.
    (24) Hwu, T.-Y.; Basu, S.; Chen, R.-M.; Cheng, Y.-R.; Hsu, J.-H.; Fan, W.; Luh, T. Y. J. Polym. Sci. A: Polym. Chem. 2003, 41, 2218.
    (25) Cheng, Y.-R.; Basu, S.; Luo, S.-J.; Luh, T.-Y. Macromolecules 2005, 38, 1442.
    (26) Yeh, M.-Y.; Lin, H.-C.; Lee, S.-L.; Chen, C.-S.; Lim, T.-S.; Fann, W.; Luh, T.-Y. Chem. Comm. 2007, 3459.
    (27) Kovalenko, S. A.; Schanz, R.; Hennig, H.; Ernsting, N. P. J. Chem. Phys. 2001, 115, 3256.
    (28) F□rster, T. Ann. Phys. 1948, 2, 55.
    (29) Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
    (30) Scholes, G. D. Annu. Rev. Phys. Chem. 2003, 54, 57.
    (31) Valeur, B. Molecular Fluorescence: Principles and Applications; WeinHeim: Wiley-VCH, 2002.
    (32) Faure, S.; Stern, C.; Guilard, R.; Harvey, P. D. J. Am. Chem. Soc. 2004, 126, 1253.
    (33) Atas, E.; Peng, Z.; Kleiman, V. D. J. Phys. Chem. B 2005, 109, 13553.
    (34) Cho, H. S.; Rhee, H.; Song, J. K.; Min, C.-K.; Takase, M.; Aratani, N.; Cho, S.; Osuka, A.; Joo, T.; Kim, D. J. Am. Chem. Soc. 2003, 125, 5849.
    (35) Fujitsuka, M.; Cho, D. W.; Ohshita, J.; Kunai, A.; Majima, T. J. Phys. Chem. C 2007, 111, 1993.
    (36) Hippius, C.; van Stokkum, I. H. M.; Gs□nger, M.; Groeneveld, M. M.; Williams, R. M.; W□rthner, F. J. Phys. Chem. C 2008, 112, 2476.
    (37) Gentili, P. L.; Mugnai, M.; Bussotti, L.; Righini, R.; Foggi, P.; Cicchi, S.; Ghini, G.; Viviani, S.; Brandi, A. J. Photochem. Photobiol. A 2007, 187, 209.
    (38) Shibano, Y.; Sasaki, M.; Kawanishi, Y.; Araki, Y.; Tsuji, H.; Ito, O.; Tamao, K. Chem. Lett. 2007, 36, 1112.
    (39) Karatsu, T. J. Photochem. Photobiol. C 2008, 9, 111.
    (40) Zhang, G.; Ma, J.; Jiang, Y. J. Phys. Chem. B 2005, 109, 13499.
    (41) Yang, D.-D. H.; Yang, N.-c. C. ; Steele, I. M.; Li, H.; Ma, Y.-Z.; Fleming, G. R. J. Am. Chem. Soc. 2003, 125, 5107.
    (42) Kim, T. G.; Castro, J. C.; Loudet, A.; Jiao, J. G.-S.; Hochstrasser, R. M.; Burgess, K.; Topp, M. R. J. Phys. Chem. A 2006, 110, 20.
    (43) van Walree, C. A.; Roest, M. R.; Schuddeboom, W.; Jenneskens, L. W.; Verhoeven, J. W.; Warman, J. M.; Kooijman, H.; Spek, A. L. J. Am. Chem. Soc. 1996, 118, 8395.
    (44) Verhoeven, J. W.; Dirkx, I. P.; de Boer, T. J. Tetrahedron 1969, 25, 4037.
    (45) Hsu, C.-P.; You, Z.-Q.; Chen, H.-C. J. Phys. Chem. C 2008, 112, 1204.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE