研究生: |
徐聖翔 Xu, Sheng-Xiang |
---|---|
論文名稱: |
逐列合併設計及其計數函數 Row-Wise Merged Design and Its Count Function |
指導教授: | 鄭少為 |
口試委員: |
林長鋆
蔡碧紋 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 倍增設計 、列互換 、直交性 |
相關次數: | 點閱:61 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
給定兩個實驗次數相同的二水準因子設計,令D_1和D_2分別表示它們的設計矩陣。考慮另一個實驗次數相同的設計D^(r),其由D_1與D_2^(r)列與列合併而成,其中D_2^(r)表示 D_2 經過某種列互換 r 後所得的矩陣。我們稱D^(r)為逐列合併設計。本研究探討已知D_1及D_2之計數函數的情況下,D^(r)的計數函數與它們之間的關係。首先我們透過D_1, D_2列與列之間的映射關係以及對計數函數的係數做分類兩種不同觀點,對D^(r)的計數函數進行討論,得出D^(r)的計數函數並不唯一的結果。接著我們限制D_1為D_2的子矩陣,在此條件下,推導出D^(r)的計數函數可被D_1, D_2之計數函數唯一決定,並發展出一些性質與應用。最後,假設已知D^(r)的計數函數,考慮對D_2^(r)某兩列作互換後再形成的新逐列合併設計D^(r'),我們藉由r與r'之間的關係來刻劃D^(r)與D^(r')的計數函數之間的關連性。
1. Butler, N. A. (2003), “Minimum aberration construction results for nonregular two‐level fractional factorial designs,” Biometrika, 90(4), 891-898.
2. Chen, H. H., and Cheng, C. S. (2006), “Doubling and projection: a method of constructing two-level designs of resolution IV,” The Annals of Statistics, 34(1), 546-558.
3. Cheng, S. W., Li, W., and Kenny, Q. Y. (2004), “Blocked nonregular two-level factorial designs,” Technometrics, 46(3), 269-279.
4. Fontana, R., Pistone, G., and Rogantin, M. P. (2000), “Classification of two-level factorial fractions,” Journal of Statistical Planning and Inference, 87(1), 149-172.
5. Lin, C. D., Sitter, R. R., and Tang, B. (2012), “Creating catalogues of two-level nonregular fractional factorial designs based on the criteria of generalized aberration,” Journal of Statistical Planning and Inference, 142(2), 445-456.
6. Lin, C. Y., and Cheng, S. W. (2012), “Isomorphism examination based on the count vector,” Statistica Sinica, 22(3), 1253-1272.
7. Ou, Z., and Qin, H. (2010), “Some applications of indicator function in two-level factorial designs,” Statistics and probability letters, 80(1), 19-25.
8. Tang, B., and Deng, L. Y. (1999), “Minimum G_2-aberration for nonregular fractional factorial designs,” Annals of Statistics, 27(6), 1914-1926.
9. Wu, C. F. J., and Hamada, M. S. (2009), Experiments: Planning, Analysis and Parameter Design Optimization, 2nd Edition. New York: Wiley.
10. Ye, K. Q. (2003), “Indicator function and its application in two-level factorial designs,” The Annals of Statistics, 31(3), 984-994.