簡易檢索 / 詳目顯示

研究生: 高信揚
Hsin-Yang Kao
論文名稱: 週期離散系統之分析
Minimal Realization of Periodic Descriptor Systems
指導教授: 林文偉
Wen-Wei Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 34
中文關鍵詞: 週期離散系統
外文關鍵詞: Periodic Descriptor Systems
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在這篇論文中,我要討論的是隨時間變動的週期離散系統,不只系統隨時間變化,每個時間系統的形式(size)也是隨時間不同。首先我簡單的描述Kalman canonical decomposition所運用的手法,此為整篇論文運作的基形。接下來將要討論的系統運用指導教授林文偉老師及郭岳承學長的方法改寫為forward和backward 兩個部分以便於觀察、控制。並定義forward和backward 兩個子系統及隨時間變動的週期離散系統的可達性及可觀測性,而由定義給予可達性及可觀測性的一些等價性質,並證明其等價成立。在有了明確的定義後,由於等價條件的類似性質,運用Kalman canonical decomposition的手法將forward和backward 兩個子系統minimal realization,透過瞭解子系統,以達到分析隨時間變動的週期離散系統的目的。由於整個理論架構都只有用到基本的矩陣運算,未來可將其寫成演算法,便於電腦運算。


    In this paper we define the reachability and observability of
    periodic descriptor system with time-varying size,and deduce some
    equivalent properties from the definitions of the reachability and
    observability,and moreover minimal realization of the system.

    1.Itroduction 2.Periodic Descriptor Systems 3.Decomposition 4.Conclusion

    References

    [1]
    M. C. Berg, N. Amit,and J. D. Powell
    Multirate digital control system design,
    IEEE Trans. Auto. Control,
    32(1987),pp. 343-348
    [2]
    A. Emani-Naeini and P. Van Dooren
    Computation of Zeros of Linear Multivariable System ,
    1982.
    [3]
    A. Varga and P. Van Dooren,
    On Computing the Zero of Periodic Systems,
    CDC 2002,
    Las Vegas, NV,2002.
    [4]
    S. Bittaanti,
    Deterministic and stochastic linear periodic systems, in Time series and linear systems,
    S.Bittaanti,ed., Springer-Verlag,
    New York,1986,pp.141-182.
    [5]
    S. Bittaanti, P. Colaneri, and G. D. Nicolao,
    The difference periodic Riccati equation for the periodic prediction problem,
    IEEE Trans.
    Auto. Control,33(1988),pp.706-712.
    [6]
    A. Bojanczyk, G. H. Golub,and P. Van Dooren,
    The Periodic Schur decomposition.Algorithms and applications,
    inProc. SPIE Conference, vol. 1770,
    San Diego, 1992,pp. 31-42.
    [7]
    L. Dai,
    Singular Control Systems,
    Springer-verlag
    Berlin, Heidelberg,
    1989. 30
    [8]
    D. S. Flamm and A. J. Laub,
    A new shift-invariant representation of periodic
    linear systems,
    in,System and Control Lett.,17(1991), pp. 9-14.
    [9]
    J. J. Henh and A. J. Laub,
    Numerical solution of the discrete-time periodic Riccati
    equation,
    in,IEEE Trans. Auto. Control,39(1994),pp. 1197-1210.
    [10]
    Y.-C. Kuo, W.-W. Lin and S.-F. Xu,
    Regularization of linear discrete-time periodic descriptor
    systems by derivative and proportional state feedback,
    in SIAM J. MAtrix analy. Appl.,(2004)
    [11]
    B. Francis and T. T, Georgion
    Stability theory for linear time-invariant plants with periodic digital controllers,
    in,IEEE Trans. Auto. Control,33(1988),pp. 820-832.
    [12]
    M.Kono,
    Eigenvalue assignment in linear discrite-time system,
    in,Int. J. Control ,32(1980),pp. 149-159.
    [13]
    W.-W. Lin and J.-G. Sun,
    Perturbation analiysis for eigenproblem of periodic matrix pairs,
    in,Lin. Alg. Appl. ,337(2001),pp. 157-187.
    [14]
    W.-W. Lin and J.-G. Sun,
    Perturbation analiysis of periodic discrete-time algebraic
    Riccati equation,
    SIAM J. MAtrix analy. Appl. 24(2002),pp. 411-438.
    [15]
    W.-W. Lin and P. Van Dooren, and S.-F. Xu
    Periodic invariant subspaces in control,
    in, Workshop on Periodic Systems and Control,
    Como, Italy,2001,pp. 21-25. 31
    [16]
    M. L. Liou and Y.-L. Kou,
    Exact analiysis of swutched capacitor circuits with arbitrary inputs,
    IEEE Trans. Circuits Systems,26(1979),pp. 213-223.
    [17]
    J. A. Richards Analysis of periodically time-varying
    systems,Springer-Verlag,
    Berlin, 1983.
    [18]
    J. Sreedhar and P. Van dooren,
    Forward/backward decomposition of periodic descriptor systems and two point boundary value problems,
    in European Control Conf.,1997 213-223.
    [19]
    J. Sreedhar and P. Van dooren, Periodic descriptor systems:Solvability and conditionability,
    IEEE Trans. Auto. Control,44(1999),pp. 310-313.
    [20]
    J. Sreedhar and P. Van dooren,
    When is a periodic discrete-time system equivalent to a time invariant one? ,
    Lin. Alg. Appl212/213(1994),pp. 131-151.
    [21]
    A. Varga,
    Balancing related methods for
    minimal realization of periodic systems,
    System and Control Lett.,36(1999),pp. 39-349.
    [22]
    A. Varga,
    Robust and minimum norm pole assignment with periodic state feedback,
    IEEE Trans. Auto. Control,45(2000),pp. 1017-1022.
    [23]
    A. Varga,
    Balanced truncation model reduction of periodic systems,
    IEEE Trans. Auto. Control. 32
    [24]
    A. Varga and P. Van Dooren,
    Computational methods for periodic systems -an overview,
    in Workshop on Periodic Systems and Control, Como, Italy,2001, pp. 171-176.
    [25]
    J. Vlach, K. Singhai, and M. Vlach
    Computer oriented formulation of equations and analysis of
    switched-capccitor networks,
    IEEE Trans. Circuits and Systems,31(1984), pp. 735-765.
    [26]
    Patrizio Colaneri, and Sauro Longhi,
    The realization problem for linear periodic systems,
    005-1098(94)00155-3
    [27]
    T. Stykel,
    Input-output invariants for descriptor systems,
    preprint PIMS-03-1, Pscific Institute for the Mathematical Science, Canada, 2003.
    [28]
    F. L. Lewis,
    Fundamental, reachability, and observability matrices for
    discrete descriptor systems,
    IEEE Trans. Auto. Control,30(1985),pp. 502-505.
    [29]
    B. C. Moore,
    Principal component analysis in linear systems: controllability, observability and model reduction,
    IEEE Trans. Auto. Control,26(1979),pp.17-32.
    [30]
    K. Zhou, J. C. Doyle, and K. Glover,
    Robust and Optimal Control,
    Prentice-Hall, Upper Saddle River,
    NJ, 1995. 33

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE