研究生: |
林詠翰 Lin, Yung-Han |
---|---|
論文名稱: |
利用受控螢光放射讀出Transmon量子位元狀態 Conditional Fluorescence Readout of a Transmon Qubit |
指導教授: |
林晏詳
Lin, Yen-Hsiang |
口試委員: |
許耀銓
Hoi, Io-Chun 林俊達 Lin, Guin-Dar |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 超導量子位元 、螢光放射 、量子態讀出 |
外文關鍵詞: | superconducting qubit, qubit fluorescence, quantum-state readout |
相關次數: | 點閱:135 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用超導量子干涉裝置(SQUID)設計出一個躍遷能階可調的Transmon量子位元,並將此量子位元置於一維微波導線中,導線末端有一電容式鏡子。此電容式鏡子的設計使微波導線對空間與頻率產生週期性結構,並產生多個節點頻率。我們可以調整量子位元的躍遷頻率以控制其與微波導線的耦合強度。利用此特性,我們將量子位元調到0-1 躍遷的自發衰變率遠小於1-2 躍遷,進而減慢量子位元在讀取量子態時的演變速度。
我們先使用VNA對量子位元做頻域量測,以得到特徵參數,並作為時域量測的參照值。接著我們利用1-2 躍遷的螢光訊號對量子位元做狀態讀出,此螢光訊號強度正比於量子位元的激發態機率。從量測結果我們可以觀察出量子位元在不同強度與持續時間的激發光作用下的狀態演變。
實驗設置上,我們使用任意波型產生器(AWG)與微波訊號源(RF source)產生激發與量測的脈衝波。在量測端,我們使用高速數位轉化器得到訊號電壓值,並進行數位解調得到螢光訊號的強度變化。
We use SQUID to design a Transmon qubit with tunable transition frequency. Then this qubit is embedded to 1D transmission line with capacitive mirror at the end. The mirror creates a periodic structure with several node frequency, so we can change the coupling strength between qubit and transmission line by changing the transition frequency. Utilizing this property, we can tune our qubit so that it's 0-1 transition has a much slower relaxation rate than 1-2 transition, which helps slow down the qubit dynamic in the readout process.
We first use VNA for frequency domain measurement and characterizing qubit, the results are then used to set up time domain measurement.
We demonstrate readout of a Transmon qubit using 1-2 transition fluorescence conditioned on qubit excited state. The readout results show us the excited state evolution under driving pulse with various length and strength.
The experiments are performed using AWG(arbitrary waveform generator) and RF source to create driving and probing pulse, and high speed digitizer for sampling signals, which is then demodulated digitally.
[1] Scott Aaronson. The limits of quantum. Scientific American, 298(3):62{69,
2008.
[2] Nathanael Cottet. Energy and information in fluorescence with superconducting circuits. PhD thesis, Universite Paris sciences et lettres, 2018.
[3] Nathanael Cottet, Haonan Xiong, Long B Nguyen, Yen-Hsiang Lin, and
Vladimir E Manucharyan. Electron shelving of a superconducting articial
atom. Nature communications, 12(1):1{6, 2021.
[4] I-C Hoi, A Frisk Kockum, L Tornberg, A Pourkabirian, G Johansson, Per
Delsing, and CM Wilson. Probing the quantum vacuum with an articial
atom in front of a mirror. Nature Physics, 11(12):1045{1049, 2015.
[5] Io-Chun Hoi. Quantum optics with propagating microwaves in superconducting
circuits. Chalmers University of Technology, 2013.
[6] Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, David I Schuster,
Johannes Majer, Alexandre Blais, Michel H Devoret, Steven M Girvin, and
Robert J Schoelkopf. Charge-insensitive qubit design derived from the cooper
pair box. Physical Review A, 76(4):042319, 2007.
[7] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavs-
son, and William D Oliver. A quantum engineer's guide to superconducting
qubits. Applied Physics Reviews, 6(2):021318, 2019.
49
[8] Michael Tinkham. Introduction to superconductivity. Courier Corporation,
2004.