簡易檢索 / 詳目顯示

研究生: 曾安邦
論文名稱: 原子層沉積法成長氧化鋅薄膜與退火效應對結構及光電特性研究
Epitaxial growth and annealing effect on the structural, optical and electrical properties of ZnO thin films grown by atomic layer deposition
指導教授: 林志明
Chih-Ming Lin
李信義
Hsin-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 原子層沉積氧化鋅退火氣流中斷法
外文關鍵詞: atomic layer deposition, ZnO, annealing, flow-rate interruption method
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用原子層沉積法成長非極性氧化鋅磊晶薄膜於 (101 ̅0) 方向藍寶石基板上,比較連續氣流法與氣流中斷法成長薄膜品質之差異。並使用最佳化參數氣流中斷法 200℃ 所成長的氧化鋅薄膜,成長完後進行 100℃~1000℃ 溫度退火,探討其結構與光電特性關係,利用高解析同步輻射X光繞射 (XRD)、低溫光激螢光光譜 (LTPL)、霍爾量測 (Hall) 及原子力顯微鏡 (AFM) 來分析其結構、光電特性及表面形貌與退火之關連。
    實驗結果顯示,氣流中斷法具有較寬廣的原子層成長溫度區間、較佳的薄膜沉積速率、極佳的結構品質及平整的表面,因此選用氣流中斷法成長 2000 周期之氧化鋅薄膜,並研究其退火效應。退火效應在結構部分,當退火溫度超過 800℃ 時,結晶性有明顯大幅改善。隨著退火溫度增加,氧化鋅薄膜沿L方向逐漸被壓縮,而沿H方向則出現拉伸現象,並保持總晶格體積不變。在光學部分,光激發螢光光譜之近帶躍遷強度亦隨著退火溫度增加而增強。在電性部分,在低溫退火區間 (100℃~ 500℃),由於薄膜中摻雜氫原子之散逸,使片電阻率變高、自由載子濃度與電子遷移率變低;然而在高溫區間 (500 ℃~ 1000℃),由於結晶性改善及氧化鋅自我互補效應影響,造成片電阻率、自由載子濃度與電子遷移率之趨勢與低溫區相反。在表面形態部分,當退火溫度 1000℃ 之條件處理下,可有效改善表面粗糙度。


    Non-polar (1000) ZnO epitaxial thin films have been prepared on (101 ̅0) m-plane sapphire by using atomic layer deposition (ALD) method , the comparison results of conventional (non-stock mode) and flow-rate interruption method (FRI or stock mode) showed the thin films grown by FRI with wide growth temperature windows, higher growth rate, good crystalline quality and better surface roughness. For annealing analysis, we used the optimize growth conditions of stock mode to growth ZnO epitaxial thin films at 200℃ substrate temperature and anneal from 100 to 1000℃ after deposition. The structural, optical and electrical properties of annealed ZnO thin film were investigated by using in-situ high resolution x-ray diffraction (XRD), low-temperature photoluminescence (LTPL), Hall measurement and atomic force microscope (AFM) measurements.
    The XRD results showed the thin film crystalline quality was improved rapidly as annealing temperature increased over 800℃ , surface normal (H direction) and in-plane (L direction) crystal truncation rock (CTR) scan indicated the H direction was tensile and L direction was compressive in order to maintain the total cell volume in constant. Furthermore, the near-band-edge emission intensity of ZnO measured in LTPL was also showed large enhancement as increasing the annealing temperature. The electrical measurements results, in the range of low temperature annealing (100℃~500℃), because the hydrogen atoms doped films fugitive, resistivity was increased, carrier concentration and mobility were decreased, in the range of high temperature annealing (500℃~1000℃), crystalline quality was improved and ZnO self-complementary effect, resistivity, carrier concentration and mobility show an opposite trend respect to lower temperature region. The AFM results showed the surface roughness of ZnO after annealing at 1000℃ can improve effectively.

    摘要……………………………………………………………………Ⅰ Abstract ………………………………………………………………Ⅲ 致謝……………………………………………………………………Ⅴ 目錄……………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅸ 表目錄………………………………………………………………ⅩⅢ 第一章、緒論……………………………………………………………1 1.1 前言…………………………………………….………………1 第二章、理論基礎與文獻回顧…………………………………………3 2.1 氧化鋅材料……………………………………………………3 2.1.1 氧化鋅之基本性質……………………………………3 2.1.2 氧化鋅之發光機制……………………………………4 2.1.3 氧化鋅之成長方式……………………………………9 2.2 原子層沉積技術 ……………………………………………10 2.2.1 原子層沉積原理………………………………………10 2.2.2 原子層沉積成長氧化鋅薄膜…………………………12 2.3 退火處理 ……………………………………………………15 2.4 基板的選擇 …………………………………………………19 2.4.1 氧化鋁基板……………………………………………21 2.4.2 晶格不匹配度…………………………………………24 2.5 研究動機 ……………………………………………………26 第三章、實驗方法與步驟………………………………………………28 3.1實驗設備………………………………………………………28 3.1.1 原子層沉積儀 (ALD) ………………………………28 3.1.2 快速退火爐 (RTA) …………………………………32 3.2 實驗流程 ……………………………………………………33 3.2.1 基板準備………………………………………………34 3.2.2 基板清洗………………………………………………34 3.2.3 成長氧化鋅薄膜………………………………………35 3.2.4 快速退火熱處理………………………………………36 3.3 分析量測儀器 ………………………………………………38 3.3.1 X光繞射儀 (XRD) …………………………………38 3.3.2 X光反射率 (XRR) ………………………………41 3.3.3 光激螢光光譜儀 (PL) ………………………………43 3.3.4 霍爾量測 (Hall) ……………………………………47 3.3.5 原子力顯微鏡 (AFM) ………………………………50 第四章、實驗結果與討論………………………………………………52 4.1 連續氣流法與氣流中斷法成長氧化鋅薄膜之差異………53 4.1.1 前驅物控制參數選擇方式……………………………54 4.1.2 氧化鋅薄膜結構分析…………………………………56 4.1.3 氧化鋅薄膜 X 光反射率分析………………………62 4.2 不同退火溫度對氧化鋅薄膜特性影響……………………65 4.2.1 X光量測之結構特性分析 (CTR scan) ……………65 4.2.2 光激螢光光譜量測之光學特性分析………………72 4.2.3 霍爾量測之電學特性分析……………………………75 4.2.4 原子力顯微鏡之表面粗糙度分析……………………77 第五章、結論 …………………………………………………………78 第六章、未來工作………………………………………………………80 參考文獻………………………………………………………81 附錄……………………………………………………………88 自我介紹………………………………………………………89

    1. S. Nakamura et al., Appl. Phys. Lett. 72, 2014 (1998).
    2. M. H. Huang et al., Science 292, 1897 (2001).
    3. C. S. Ku, H. Y. Lee, J. M. Huang, and C. M. Lin, Mater. Chem. Phys. 120, 236 (2010).
    4. 李侃峰,黃智勇,王慶鈞。原子層沉積技術的沿革。機械工業雜誌;2009.5,51-57
    5. M. Leskelä and M. Ritala, Angew. Chem. Int. Ed. 42, 5548 (2003).
    6. U. Malm, J. Malmström, C. Platzer-Björkman and L. Stolt, Thin Solid Films 480, 208 (2005).
    7. E. Gerritsen, N. Emonet, C. Caillat, N. Jourdan, M. Piazza, D. Fraboulet, B. Boeck, A. Berthelot, S. Smith and P. Mazoyer , Solid-State Electron. 49, 1767 (2005).
    8. C.X. Shan, X. Hou and K.-L. Choy, Surf. Coat. Technol. 202, 2399 (2008).
    9. R. D. Vispute et al., Appl. Phys. Lett. 73, 348 (1998).
    10. W. S. Hu, Z. G. Liu, R. X. Wu, Y. F. Chen, W. Ji, T. Yu, and D. Feng, Appl. Phys. Lett. 71, 548 (1997).
    11. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, Appl. Phys. Lett. 85, 3657 (2004).
    12. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002).
    13. Y. Chen, D. M. Bagnal, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    14. Z. L. Wang, Zinc Oxide Nanostructures: Growth, Properties and Applications, J. Phys.: Condens. Mater. v.16, R829-R858, 2004
    15. X. T. Zhang et al., J. Lumin. 99, 149 (2002).
    16. K. T. Roro, J. K. Dangbegnon, S. Sivaraya, A. W. R. Leitch, and J. R. Botha, J. Appl. Phys. 103, 053516 (2008).
    17. D. R. Vij, and N. Singh,Nova Science Publishers, N. Y., (1998).
    18. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79, 943 (2001).
    19. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    20. Bixia Lin, Zhuxi Fu, and Yunbo Jia, Appl. Phys. Lett. 79, 943 (2001).
    21. K. T. Roro, J. K. Dangbegnon, S. Sivaraya, A. W. R. Leitch, and J. R. Botha, J. Appl. Phys. 103, 053516 (2008).
    22. W. Lee, M.-C. Jeong, and J.-M. Myoung, Acta Mater. 52, 3949 (2004).
    23. Y. Zhang, G. Du, H. Zhu, C. Hou, K. Huang and S. Yang, Opt. Mater. 27, 399 (2004).
    24. P.T. Hsieh, Y.C. Chen, K.S. Kao and C.C. Cheng, J. Eur. Ceram. Soc. 27, 3815 (2007).
    25. H. Zhang et al., Mater. Lett. 59, 1696 (2005).
    26. Y.F. Gao, M. Nagai, Y. Masuda, F. Sato and K. Koumoto, J. Cryst. Growth 286, 445 (2006).
    27. K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B.P. Zhang and Y. Segawa, Thin Solid Films 433, 131 (2003).
    28. W.T. Chiou, W.U. Wu and J.M. Ting. Diam. Relat. Mater. 12, 1841 (2003).
    29. S.K. Kim, C.S. Hwang, S. Ko Park and S.J. Yun, Thin Solid Films 478, 103 (2005).
    30. C. S. Ku, H. Y. Lee, J. M. Huang, and C. M. Lin, Mater. Chem. Phys. 120, 236 (2010).
    31. M. Leskela and M. Ritala, Thin Solid Films 409, 138 (2002).
    32. M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp , Chem. Vap. Deposition 5, 7(1999).
    33. T. Suntola, "Atomic Layer Epitaxy" Materials Science Reports, Volume 4, number 7, December 1989, 0920-2307/89, Elsevier Science Publishers B.V.
    34. 李侃峰,黃智勇,王慶鈞。原子層沉積技術的沿革。機械工業雜誌2009.5,51-57
    35. M. Leskelä and M. Ritala, Angew. Chem. Int. Ed. 42, 5548(2003).
    36. U. Malm, J. Malmström, C. Platzer-Björkman and L. Stolt, Thin Solid Films 480, 208 (2005).
    37. S.M. Rossnagel, J. Vac. Sci. Technol. B 20, 2328 (2002).
    38. G.D. Wilk, R.M. Wallace and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).
    39. E. Gerritsen, N. Emonet, C. Caillat, N. Jourdan, M. Piazza, D. Fraboulet, B. Boeck, A. Berthelot, S. Smith and P. Mazoyer, Solid-State Electron. 49, 1767 (2005).
    40. C.X. Shan, X. Hou and K.-L. Choy, Surf. Coat. Technol. 202, 2399 (2008).
    41. A. Yamada, B. Sang and M. Konagai Appl. Surf. Sci. 112, 216 (1997).
    42. C.H. Liu, M. Yan, X. Liu, E. Seelig and R.P.H. Chang, Chem. Phys. Lett. 355, 43 (2002).
    43. K.B. Sundaram and A. Khan. Thin Solid Films 295, 87 (1997).
    44. J. F. Humphreys, R. W. Cahn, P. Haasen and E. J. Kramer , in Materials Science and Technology 15, 371 (1991).
    45. S. Yang, B. H. Lin, W.-R. Liu, J.-H. Lin, C.-S. Chang, C.-H. Hsu, and W. F. Hsieh, Crystal Growth & Design 9, 5184 (2009)
    46. K. Koike, K. Hama, I. Nakashima, S. Sasa, M. Inoue, and M. Yano, Jpn. J. Appl. Phys. 144, 3822 (2005).
    47. T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Physica E (Amsterdam) 21, 671 (2004).
    48. T. Makino, K. Tamura, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H.Koinuma, Appl. Phys. Lett. 81, 2355 (2002).
    49. C. Morhain, X. Tang, M. Teisserie-Doninelli, B. Lo, M. La ¨ugt, J.-M. Chauveau, B.Vinter, O. Tottereau, P. Venne´ gues, C. Deparis, G. Neu, Superlattices Microstructures 38, 455 (2005).
    50. O. Dulub, L.A. Boatner and U. Diebold. Surf. Sci. 519, 201 (2002).
    51. T. Moriyama and S. Fujitai, Jap. J. Appl. Phys. 44, 7919 (2005).
    52. H. Matsui and H. Tabata, J. Appl. Phys. 99, 124307 (2006).
    53. T. Moriyama, S. Fujita, Jpn. J. Appl. Phys., 44, 7919 (2005).
    54. L. Liu, J. H. Edger, Materials Science and Engineering R37, 61 (2002)
    55. B. D. Cullity, Elements of X-ray diffraction, 2nd ed.Addison-Wesley, Boston, MA, 86 (1978).
    56. A. Pundt, M. Dornheim, M. Gurerdene, H. Teichler, H. Ehrenberg, M. T. Reetz, N. M. Jisrawi, Eur. Phys. J. D. 19 (2002) 333.
    57. R. J. Davis, S. M. Landry, J. A. Horsley, M. Boudart, Phys. Rev. B, 39 (1989) 10580.
    58. D. Rickerby and A. Matthews, "Advanced Surface Coatings: a Handbook of Surface Engineering," Blackie & Son Limited, (1991)
    59. L. J. van der PAUW. , “A method of measuring the redidtivity and hall coefficient on lamellae of arbitrary shape” Philips Technical review 20, 8 (1958).
    60. Maria P. Gutiérrez, Haiyong Li, Jeffrey Patton, “Thin Film Surface Resistivity”, In partial fulfillment of course requirements for Mate 210 Experimintal Methods Engineering Fall (2002).
    61. B. Streetman, “Solid State Electronic Device”, Prentice-Hall, Inc, 439 (1995).
    62. C. S. Ku, H. Y. Lee, J. M. Huang, and C. M. Lin, Mater. Chem. Phys. 120, 236 (2010).
    63. C. S. Ku, J. M. Huang, C. Y. Cheng, and C. M. Lin , Appl. Phys. Lett. 97, 181915 (2010)
    64. Seong-Jun Kang ,Journal of the Korean Physical Society,51, 1,183 (2007)
    65. H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, Chap. 3.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE