簡易檢索 / 詳目顯示

研究生: 呂政儀
Chengii Lu
論文名稱: 超快速化學反應動態學研究:氣態1-hydroxy-2-acetonaphthone之激態分子內質子轉移反應
Ultrafast reaction dynamics study: Excited-state intramolecular proton transfer of gas phase 1-hydroxy-2-acetonaphthone
指導教授: 鄭博元
Po-Yuan Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
畢業學年度: 87
語文別: 中文
論文頁數: 82
中文關鍵詞: 激態分子內質子轉移反應超快速化學反應動態學
外文關鍵詞: Excited-state intramolecular proton transfer, Ultrafast, 1-hydroxy-2-acetonaphthone
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文旨在利用超快速雷射光譜技術結合多光子吸收游離的偵測方法來研究氣態1-hydroxy-2-acetonaphthone(HAN)分子在激發態S1激發態的反應動態學。以脈衝寬度約等於150 fsec的雷射將HAN分子激發後,觀察其弛緩速率,發現HAN(S1)分子的衰變呈現出雙指數衰變(biexponential decay)此現象可以激態分子內快速質子轉移(excited-state intramolecular proton transfer,簡稱ESIPT)及伴隨其後的其他較慢的弛緩途徑來解釋。由實驗結果發現S1激發態分子內質子轉移反應的時間大約為60~85 psec,其反應速率隨激發雷射光的波長而緩慢改變,這顯示tantomerization的反應途徑上是有能障存在的。


    Abstract
    The excited-state dynamics of 1-hydroxy-2-acetonaphthone (HAN) was studied in the gas phase using femtosecond time-resolved multiphoton ionization spectroscopy. Following femtosecond excitation to its S1 state, HAN was found to exhibit a biexponential decay behavior which can be consistently interpreted in terms of rapid excited-state intramolecular proton transfer (ESIPT) followed by other slower decay channels. The results revealed that ESIPT in HAN (S1) occurs in ~ 60 - 85 picoseconds in the energy range studied and suggested the existence of an energy barrier to tautomerization.

    目錄 摘要………………………………………………………………………i 英文摘要………………………………………………………………..ii 目錄……………………………………………………………………..iii 圖目錄…………………………………………………………………..v 第一章 緒論………………………………………………….………..1 第二章 背景…………………………………………………………...7 2-1 對稱型分子與類對稱型分子………………………………8 2-2 非對稱型分子……………………………...………………..10 2-2-1 dual fluorescence and large stokes shift…………………...11 2-2-2 Driving force of ESIPT……………………………………14 第三章 實驗技術及數據分析方法..……………………………..20 3-1 實驗技術……………………………………………………...20 3-2 數據分析方法……………………………………………….22 第四章 實驗裝置……………………………………………………34 4-1 超快速雷射系統………………………………...…………..34 4-1-1 Ultrafast Ti:sapphire laser system…………………….…....34 4-1-2 自鎖模摻鈦藍寶石雷射(self-mode-locked-Ti:sapphire laser oscillator)之脈衝寬度與其測量裝置………………….....37 4-2 實驗裝置……………………………………………...……...38 4-2-1 激發-探測實驗裝置………………………………………38 4-2-3激發雷射脈衝與探測雷射脈衝之交叉相關函數(cross correlation function)與其測量裝置…………….………..….….39 4-2-3 氣室及訊號偵測系統...……………………………….….40 第五章 結果與討論………………………………………………...51 5-1 實驗結果……………………………………………….…….51 5-2 結果討論…………………………………………………..…53 第六章 結論………………………………………………………….77 第七章 參考資料……………………………………………………80 圖目錄 Fig.1-1. Tautomerization of 1-hydroxy-2-acetonaphthone………………5 Fig.1-2. Structure of OHBA, OHAP and MS…………………………….5 Fig.1-3. Dispersed fluorescence of jet cooled HAN……………………...6 Fig.2-1. Structure of TRP, 9-HPO and 2-methyl-9-hydroxy-phenalenone…………………………………………………….15 Fig.2-2. Potential energy curves of intramolecular proton transfer reactions………………………………………………………...16 Fig.2-3. Potential energy curves of excited-state intramolecular proton transfer………………………………………………………….17 Fig.2-4. Schematic representation of MS system for blue and uv rotamers……………………………………………………...…18 Fig.2-5. Nodal plane representation of MO-based rationalization for excited-state tautomerization………………………………...…19 Fig.3-1. Our experiment system………………………………………...29 Fig.3-2. The principle of ion detection………………………………….31 Fig.3-3. Transient decay with ion detection I………………………..….32 Fig.3-4. Transient decay, with ion detection II………………………….33 Fig.4-1. The configuration of Tsunami………………………………....41 Fig.4-2. The configuration of CPA………………………………….…..42 Fig.4-3. Pulse stretcher and compressor………………………………...43 Fig.4-4. The configuration of regenerative cavity………………………43 Fig.4-5. The principle of CPA…………………………………………..44 Fig.4-6. The autocorrelation experiment setup………………………….45 Fig.4-7. Autocorrelation function of self-mode-locked Ti:sapphire laser ………………………………………………………….…46 Fig.4-8. The spectrum of self-mode-locked Ti:sapphire laser oscillator o………………………………...….……………………………..47 Fig.4-9. Pump-probe experimental setup……………………………….48 Fig.4-10. Experiment setup for measurement of pump-probe cross correlation function..….………………………………………...49 Fig.4-11. Pump-probe cross correlation function…………….…….…...50 Fig.5-1. Pump laser energy dependence of temporal profile of transient signal………………..…………………………………………..66 Fig.5-2. Pump laser irradiance dependence of amplitude of slow component…………………………………………………..…..67 Fig.5-3. Polarization dependence of temporal profile of transient signal… …………………………………………………………………68 Fig.5-4. Early-time transients of HAN excited at three pump wavelengths. …………….……………………………………………………69 Fig.5-5. Long-time transients of HAN excited at three pump wavelengths. ………………………………………………...…………...…...71 Fig.5-6. Different time-scale transients…………………………………73 Fig.5-7. A schematic energy level diagram of HAN showing the relevant states to dynamical processes discussed in the text.……………75

    第七章 參考文獻
    [1] E. F. Caldin and V. Gold (Eds.), Proton Transfer Reactions, Chapman and Hall, London, 1975.
    [2] P. F. Barbara, M. Nicol, M. A. El-Sayed (Eds.), Photoinduced Proton Transfer in Chemistry, Biology and Physics, J. Phys. Chem. 95 (1991) 10215 – 10524.
    [3] P. F. Barbara, P. K. Walsh, L. E. Brus, J. Phys. Chem. 93 (1989) 29.
    [4] A. Weller, Z. Elektrochem. 60 (1956) 1144.
    [5] P. F. Barbara. H. P. Trommsdorff (Eds.), Spectroscopy and Dynamics of Elementary Proton Transfer in Polyatomic Systems, Chem. Phys. 136 (1989) 163 – 360.
    [6] J. L. Herek, S. Pedersen, L. Bañares, A. H. Zewail, J. Chem. Phys. 97 (1992) 9046.
    [7] B. J. Schwartz, L. A. Peteanu, C. B. Harris, J. Phys. Chem. 96 (1992) 3591.
    [8] J. Catalán, J. C. del Valle, J. Am. Chem. Soc. 115 (1993) 4321.
    [9] A. Douhal, F. Lahmani, A. Zehnacker-Rentien, Chem. Phys. 178 (1993) 493.
    [10] S. Tobita, M. Yamamoto, N. Kurahayashi, R. Tsukagoshi, Y. Nakamura, H. Shizuka, J. Phys. Chem. A102 (1998) 5206.
    [11] S. Pedersen, L. Banares, A. H. Zewail, J. Chem. Phys. 97 (1992) 8801.
    [12] W. Fub, T. Schikarski, W. E. Schmid, S. A. Trushin, P. Hering, K. L. Kompa, J. Chem. Phys. 106 (1997) 2205.
    [13] A. Douhal, S. K. Kim, A. H. Zewail, Nature 378 (1995) 260.
    [14] G. Grégoire, I. Dimicoli, M. Mons, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, D. Solgadi, J. Phys. Chem. A102 (1998) 7896.
    [15] C. Jouvet, C. Lardeux-Dedonder, M. Richard-Viard, D. Soigadi, and A. Tremer, J. Phys. Chem., 94 (1990) 5041.
    [16] Sebastiao J. Formosinho, Luis G. Arnaut, J. Photochem. A: Chem., 75 (1993) 21.
    [17] Abderrazzak Douhal, Francoise Lahmani, ahmed H. Zewail, Chem. Phys., 207 (1996) 477.
    [18] H. Sekiya, Y. Nagashima, T. Tsuji, Y. Nishimura, A. Mori and H. Takeshita, J. Phys. Chem., 95 (1991) 10311.
    [19] A.C.P. Alves, J.M. Hollas, Mol. Phys., 23 (1972) 927.
    [20] A.C.P. Alves, J.M. Hollas, Mol. Phys., 25 (1973) 1305.
    [21] A.C.P. Alves, J.M. Hollas, H. Musa, T. Ridley, J. Mol. Spectrosc., 109 (1985) 99.
    [22] Y. Tomioka, M. Ito, N. Mikami, J. Phys. Chem., 87 (1983) 4401.
    [23] R.L. Redington, T.E. Redington, J. Mol. Spectrosc., 78 (1979) 229.
    [24] R.L. Redington, R.W. Field, Spectrochim. Acta A., 45A (1989) 41.
    [25] R. Rossetti, L.E. Brus, J. Chem. Phys. 73 (1980) 1546.
    [26] R. Rossetti, R.C. Haddon, L.E. Brus, J. Am. Chem. Soc.,102 (1980) 6913.
    [27] R. Rossetti, R. Rayford, R.C. Haddon, L.E. Brus, J. Am. Chem. Soc.,103 (1981) 4303.
    [28] P.K. sengupta, M. Kasha, Chem. Phys. Lett., 68 (1979) 382.
    [29] M. Itoh, Y. Tanimoto, K. Tokumura, J. Am. Chem. Soc.,105 (1983) 3339.
    [30] B. Dick, N.P. Ernsting, J. Phys. Chem. 91 (1987) 4261.
    [31] D. McMorrow, T. Dzugan, T.J. Aartsma, Chem. Phys. Lett., 103 (1984) 492.
    [32] S.R. Flom, P.F. Barbara, Chem. Phys. Lett., 94 (1983) 488.
    [33] M. Kasha, D. McMorrow, J. Phys. Chem. 88 (1984) 2235.
    [34] P. Chuo, D. McMorrow, T.J. Aartsma, M. Kasha, J. Phys. Chem. 88 (1984) 5652.
    [35] A.U. Acuna, A. Costela, J.M. Munoz, J. Phys. Chem. 90 (1986) 2807.
    [36] A.U. Acuna, F. Amat, J. Catalan, A. Costela, J.M. Figuera, J.M. Munoz, Chem. Phys. Lett., 132 (1986) 567.
    [37] W. Klopffer, G. Naundorf, J. Lumin., 8 (1974) 457.
    [38] W. Klopffer, G. Naundorf, J. Lumin., 20 (1979) 283.
    [39] R. Lopez-Delgado, S. Lazare, J. Phys. Chem., 85 (1981) 763.
    [40] L. Helmbrook, J.E. Kenny, B.E. Kohler, G.W. Scott, J. Chem. Phys., 75 (1981) 5201.
    [41] L. Helmbrook, J.E. Kenny, B.E. Kohler, G.W. Scott, J. Phys. Chem., 87 (1983) 280.
    [42] S. Nagaoka, U. Nagashima, Chem. Phys. 136 (1989) 153.
    [43] S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita. T. Takemura, J. Phys. Chem. 92 (1988) 166.
    [44] S. Nagaoka, Y. Shinde, K. Mukai, U. Nagashima, J. Phys. Chem. 101 (1997) 3061.
    [45] S. Nagaoka, U. Nagashima, J. Phys. Chem. 94 (1990) 1425.
    [46] S. Nagaoka, U. Nagashima, J. Phys. Chem. 95 (1991) 4006.
    [47] N. F. Scherer, L. R. Khundkar, T. S. Rose, A. H. Zewail, J. Phys. Chem. 91 (1987) 6478.
    [48] J. Kommandeur, W. A. Majewski, W. L. Meerts, D. W. Pratt, Ann. Rev. Phys. Chem. 38 (1987) 433.
    [49] S. P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, N. J. (1969).
    [50] C. J. Selisker, J. Mol. Spectro. 53 (1974) 140.
    [51] A. L. Sobolewski, W. Domcke, Chem. Phys. 184 (1994)115.
    [52] M. V. Vener, S. Scheiner, J. Phys. Chem. 99 (1995) 642.
    [53] S. Nagaoka, N. Hirota, M. Sumitani, K. Yoshihara, J. Am. Chem. Soc. 105 (1983) 4220.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE