研究生: |
呂政儀 Chengii Lu |
---|---|
論文名稱: |
超快速化學反應動態學研究:氣態1-hydroxy-2-acetonaphthone之激態分子內質子轉移反應 Ultrafast reaction dynamics study: Excited-state intramolecular proton transfer of gas phase 1-hydroxy-2-acetonaphthone |
指導教授: |
鄭博元
Po-Yuan Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 激態分子內質子轉移反應 、超快速化學反應動態學 |
外文關鍵詞: | Excited-state intramolecular proton transfer, Ultrafast, 1-hydroxy-2-acetonaphthone |
相關次數: | 點閱:128 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文旨在利用超快速雷射光譜技術結合多光子吸收游離的偵測方法來研究氣態1-hydroxy-2-acetonaphthone(HAN)分子在激發態S1激發態的反應動態學。以脈衝寬度約等於150 fsec的雷射將HAN分子激發後,觀察其弛緩速率,發現HAN(S1)分子的衰變呈現出雙指數衰變(biexponential decay)此現象可以激態分子內快速質子轉移(excited-state intramolecular proton transfer,簡稱ESIPT)及伴隨其後的其他較慢的弛緩途徑來解釋。由實驗結果發現S1激發態分子內質子轉移反應的時間大約為60~85 psec,其反應速率隨激發雷射光的波長而緩慢改變,這顯示tantomerization的反應途徑上是有能障存在的。
Abstract
The excited-state dynamics of 1-hydroxy-2-acetonaphthone (HAN) was studied in the gas phase using femtosecond time-resolved multiphoton ionization spectroscopy. Following femtosecond excitation to its S1 state, HAN was found to exhibit a biexponential decay behavior which can be consistently interpreted in terms of rapid excited-state intramolecular proton transfer (ESIPT) followed by other slower decay channels. The results revealed that ESIPT in HAN (S1) occurs in ~ 60 - 85 picoseconds in the energy range studied and suggested the existence of an energy barrier to tautomerization.
第七章 參考文獻
[1] E. F. Caldin and V. Gold (Eds.), Proton Transfer Reactions, Chapman and Hall, London, 1975.
[2] P. F. Barbara, M. Nicol, M. A. El-Sayed (Eds.), Photoinduced Proton Transfer in Chemistry, Biology and Physics, J. Phys. Chem. 95 (1991) 10215 – 10524.
[3] P. F. Barbara, P. K. Walsh, L. E. Brus, J. Phys. Chem. 93 (1989) 29.
[4] A. Weller, Z. Elektrochem. 60 (1956) 1144.
[5] P. F. Barbara. H. P. Trommsdorff (Eds.), Spectroscopy and Dynamics of Elementary Proton Transfer in Polyatomic Systems, Chem. Phys. 136 (1989) 163 – 360.
[6] J. L. Herek, S. Pedersen, L. Bañares, A. H. Zewail, J. Chem. Phys. 97 (1992) 9046.
[7] B. J. Schwartz, L. A. Peteanu, C. B. Harris, J. Phys. Chem. 96 (1992) 3591.
[8] J. Catalán, J. C. del Valle, J. Am. Chem. Soc. 115 (1993) 4321.
[9] A. Douhal, F. Lahmani, A. Zehnacker-Rentien, Chem. Phys. 178 (1993) 493.
[10] S. Tobita, M. Yamamoto, N. Kurahayashi, R. Tsukagoshi, Y. Nakamura, H. Shizuka, J. Phys. Chem. A102 (1998) 5206.
[11] S. Pedersen, L. Banares, A. H. Zewail, J. Chem. Phys. 97 (1992) 8801.
[12] W. Fub, T. Schikarski, W. E. Schmid, S. A. Trushin, P. Hering, K. L. Kompa, J. Chem. Phys. 106 (1997) 2205.
[13] A. Douhal, S. K. Kim, A. H. Zewail, Nature 378 (1995) 260.
[14] G. Grégoire, I. Dimicoli, M. Mons, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, D. Solgadi, J. Phys. Chem. A102 (1998) 7896.
[15] C. Jouvet, C. Lardeux-Dedonder, M. Richard-Viard, D. Soigadi, and A. Tremer, J. Phys. Chem., 94 (1990) 5041.
[16] Sebastiao J. Formosinho, Luis G. Arnaut, J. Photochem. A: Chem., 75 (1993) 21.
[17] Abderrazzak Douhal, Francoise Lahmani, ahmed H. Zewail, Chem. Phys., 207 (1996) 477.
[18] H. Sekiya, Y. Nagashima, T. Tsuji, Y. Nishimura, A. Mori and H. Takeshita, J. Phys. Chem., 95 (1991) 10311.
[19] A.C.P. Alves, J.M. Hollas, Mol. Phys., 23 (1972) 927.
[20] A.C.P. Alves, J.M. Hollas, Mol. Phys., 25 (1973) 1305.
[21] A.C.P. Alves, J.M. Hollas, H. Musa, T. Ridley, J. Mol. Spectrosc., 109 (1985) 99.
[22] Y. Tomioka, M. Ito, N. Mikami, J. Phys. Chem., 87 (1983) 4401.
[23] R.L. Redington, T.E. Redington, J. Mol. Spectrosc., 78 (1979) 229.
[24] R.L. Redington, R.W. Field, Spectrochim. Acta A., 45A (1989) 41.
[25] R. Rossetti, L.E. Brus, J. Chem. Phys. 73 (1980) 1546.
[26] R. Rossetti, R.C. Haddon, L.E. Brus, J. Am. Chem. Soc.,102 (1980) 6913.
[27] R. Rossetti, R. Rayford, R.C. Haddon, L.E. Brus, J. Am. Chem. Soc.,103 (1981) 4303.
[28] P.K. sengupta, M. Kasha, Chem. Phys. Lett., 68 (1979) 382.
[29] M. Itoh, Y. Tanimoto, K. Tokumura, J. Am. Chem. Soc.,105 (1983) 3339.
[30] B. Dick, N.P. Ernsting, J. Phys. Chem. 91 (1987) 4261.
[31] D. McMorrow, T. Dzugan, T.J. Aartsma, Chem. Phys. Lett., 103 (1984) 492.
[32] S.R. Flom, P.F. Barbara, Chem. Phys. Lett., 94 (1983) 488.
[33] M. Kasha, D. McMorrow, J. Phys. Chem. 88 (1984) 2235.
[34] P. Chuo, D. McMorrow, T.J. Aartsma, M. Kasha, J. Phys. Chem. 88 (1984) 5652.
[35] A.U. Acuna, A. Costela, J.M. Munoz, J. Phys. Chem. 90 (1986) 2807.
[36] A.U. Acuna, F. Amat, J. Catalan, A. Costela, J.M. Figuera, J.M. Munoz, Chem. Phys. Lett., 132 (1986) 567.
[37] W. Klopffer, G. Naundorf, J. Lumin., 8 (1974) 457.
[38] W. Klopffer, G. Naundorf, J. Lumin., 20 (1979) 283.
[39] R. Lopez-Delgado, S. Lazare, J. Phys. Chem., 85 (1981) 763.
[40] L. Helmbrook, J.E. Kenny, B.E. Kohler, G.W. Scott, J. Chem. Phys., 75 (1981) 5201.
[41] L. Helmbrook, J.E. Kenny, B.E. Kohler, G.W. Scott, J. Phys. Chem., 87 (1983) 280.
[42] S. Nagaoka, U. Nagashima, Chem. Phys. 136 (1989) 153.
[43] S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita. T. Takemura, J. Phys. Chem. 92 (1988) 166.
[44] S. Nagaoka, Y. Shinde, K. Mukai, U. Nagashima, J. Phys. Chem. 101 (1997) 3061.
[45] S. Nagaoka, U. Nagashima, J. Phys. Chem. 94 (1990) 1425.
[46] S. Nagaoka, U. Nagashima, J. Phys. Chem. 95 (1991) 4006.
[47] N. F. Scherer, L. R. Khundkar, T. S. Rose, A. H. Zewail, J. Phys. Chem. 91 (1987) 6478.
[48] J. Kommandeur, W. A. Majewski, W. L. Meerts, D. W. Pratt, Ann. Rev. Phys. Chem. 38 (1987) 433.
[49] S. P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, N. J. (1969).
[50] C. J. Selisker, J. Mol. Spectro. 53 (1974) 140.
[51] A. L. Sobolewski, W. Domcke, Chem. Phys. 184 (1994)115.
[52] M. V. Vener, S. Scheiner, J. Phys. Chem. 99 (1995) 642.
[53] S. Nagaoka, N. Hirota, M. Sumitani, K. Yoshihara, J. Am. Chem. Soc. 105 (1983) 4220.